Nature of the empty states and signature of the charge density wave instability and upper Peierls transition of TTF-TCNQ by temperature-dependent NEXAFS spectroscopy

  • Alisa Chernenkaya
  • Katerina Medjanik
  • Peter Nagel
  • Michael Merz
  • Stefan Schuppler
  • Enric Canadell
  • Jean-Paul Pouget
  • Gerd Schönhense
Regular Article


The electronic structure of TTF-TCNQ was studied by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in order to detect a spectroscopic signature of the phase transitions, especially that occurring at 54 K, which is related to a Peierls gap opening on the TCNQ stacks. All unoccupied TCNQ orbitals predicted by first-principles calculations and, in particular the pair σ(π(ag,b3u)), located in the cyano groups, are clearly resolved in our experimental data. The latter orbital was observed for the first time in our NEXAFS spectra. The temperature dependence of NEXAFS peak intensities gives evidence of a subtle modification of the electronic structure when the charge density wave (CDW) fluctuations develop as the Peierls transition of the TCNQ stacks is approached from higher temperatures. These changes are explained on the basis of the charge transfer, the shape of the lower empty TCNQ molecular orbitals and the deformation of TCNQ during the pre-transitional CDW fluctuations. Finally the data suggest that the internal stack deformation consisting in a substantial out of plane displacement of the central ring with respect to the cyano-groups allows to gain Cα-Cα bonding energy which helps the stabilization of the Peierls transition on the TCNQ stack.


Solid State and Materials 


  1. 1.
    E. Coronado, J.R. Galán-Mascarós, C.J. Gómez-García, V. Laukhin, Nature 408, 447 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    Highly Conducting Quasi-One-Dimensional Organic Crystals, Semiconductors and Semimetals, edited by E.M. Conwell (Academic Press, New York, 1988), Vol. 27 Google Scholar
  3. 3.
    T.J. Kistenmacher, T.E. Philips, D.O. Cowan, Acta Cryst. B 30, 763 (1974)CrossRefGoogle Scholar
  4. 4.
    S. Kagoshima, T. Ishiguro, H. Anzai, J. Phys. Soc. Jpn 41, 2061 (1976) ADSCrossRefGoogle Scholar
  5. 5.
    S.K. Khanna, J.P. Pouget, R. Comès, A.F. Garito, A.J. Heeger, Phys. Rev. B 16, 1468 (1977) ADSCrossRefGoogle Scholar
  6. 6.
    F. Zwik, D. Jérome, G. Margaritondo, M. Onellion, J. Voit, M. Grioni, Phys. Rev. Lett. 81, 2974 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    M. Grioni, S. Pons, E. Frantzeskakis, J. Phys.: Condens. Matter 21, 023201 (2009) ADSGoogle Scholar
  8. 8.
    D. Jérome, H. Schulz, J. Adv. Phys. 31, 299 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Pouget, in Highly Conducting Quasi-One-Dimensional Organic Crystals, Semiconductors and Semimetals (Academic Press, New York, 1988), Vol. 27, Chap. 3, pp. 87–214Google Scholar
  10. 10.
    D. Jérome, Chem. Rev. 104, 5565 (2004) CrossRefGoogle Scholar
  11. 11.
    J.P. Pouget, Z. Kristallogr. 219, 711 (2004) CrossRefGoogle Scholar
  12. 12.
    Y. Bouveret, S. Megtert, J. Phys. France 50, 1649 (1989) CrossRefGoogle Scholar
  13. 13.
    Z.Z. Wang, J.C. Girard, C. Pasquier, D. Jérome, K. Bechgaard, Phys. Rev. B 67, 121401(R) (2003) ADSCrossRefGoogle Scholar
  14. 14.
    G. Shirane, S.M. Shapiro, R. Comès, A.F. Garito, A.J. Heeger, Phys. Rev. B 14, 2325 (1976) ADSCrossRefGoogle Scholar
  15. 15.
    J.E. Eldridge, Y. Lin, T.C. Mayadunne, L.K. Montgomery, S. Kaganov, T. Miebach, Solid State Commun. 105, 427 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Pouget, S.K. Khanna, F. Denoyer, R. Comès, A.F. Garito, A.J. Heeger, Phys. Rev. Lett. 37, 437 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Pouget, Physica B 407, 1762 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    W.D. Grobman, B.D. Silverman, Solid State Commun. 19, 319 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    M. Sing, J. Meyer, M. Hoinkis, S. Glavion, P. Blaha, G. Gavrila, C.S. Jacobsen, R. Claessen, Phys. Rev. B 76, 245119 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    J. Fraxedas, Y.J. Lee, I. Jimenez, R. Gago, R.M. Nieminen, P. Ordejón, E. Canadell, Phys. Rev. B 68, 195115 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    J. Fraxedas, S. Molas, A. Figueras, I. Jimenes, R. Gago, P. Auban-Senzier, M. Goffman, J. Solid St. Chem. 168, 384 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    C. Rojas, J. Caro, M. Grioni, J. Fraxedas, Surf. Sci. 482, 546 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    J. Stöhr, NEXAFS Spectroscopy, Springer Series in Surface Science (Springer, Heidelberg, 1992), Vol. 25Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alisa Chernenkaya
    • 1
    • 2
  • Katerina Medjanik
    • 1
  • Peter Nagel
    • 3
  • Michael Merz
    • 3
  • Stefan Schuppler
    • 3
  • Enric Canadell
    • 4
  • Jean-Paul Pouget
    • 5
  • Gerd Schönhense
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany
  2. 2.Graduate School Materials Science in MainzMainzGermany
  3. 3.Institut für FestkörperphysikKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)BellaterraSpain
  5. 5.Laboratoire de Physique des SolidesUniversité Paris-Sud, CNRS UMR 8502OrsayFrance

Personalised recommendations