Advertisement

Fluctuation theorems for excess and housekeeping heat for underdamped Langevin systems

  • Sourabh LahiriEmail author
  • Arun M. Jayannavar
Regular Article

Abstract

We present a simple derivation of the integral fluctuation theorems for excess and housekeeping heat for an underdamped Langevin system, without using the concept of dual dynamics. In conformity with the earlier results, we find that the integral fluctuation theorem for housekeeping heat holds when the steady state distributions are symmetric in velocity, whereas there is no such requirement for the excess heat. We first prove the integral fluctuation theorem for the excess heat, and then show that it naturally leads to the integral fluctuation theorem for housekeeping heat. We also derive the modified detailed fluctuation theorems for the excess and housekeeping heats.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L.D. Landau, E.M. Lifshitz, in Statistical Physics, 3rd edn. (Butterworth-Heinemann, 1980), Part 1 Google Scholar
  2. 2.
    U. Seifert, Phys. Rev. Lett. 95, 040602 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    U. Seifert, Eur. Phys. J. B 64, 423 (2008) ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Oono, M. Paniconi, Prog. Theor. Phys. Suppl. 130, 29 (1998) ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    T. Hatano, S. Sasa, Phys. Rev. Lett. 86, 3463 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    T. Speck, U. Seifert, J. Phys. A 38, L581 (2005) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    R. García-García, V. Lecomte, A.B. Kolton, D. Domínguez, J. Stat. Mech. 2012, P02009 (2012) CrossRefGoogle Scholar
  9. 9.
    M. Esposito, C. Van den Broeck, Phys. Rev. Lett. 104, 090601 (2010) ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Esposito, C. van den Broeck, Phys. Rev. E 82, 011143 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    M. Esposito, C. van den Broeck, Phys. Rev. E 82, 011144 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    R.E. Spinney, I.J. Ford, Phys. Rev. Lett. 108, 170603 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    R.E. Spinney, I.J. Ford, Phys. Rev. E 86, 021127 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    R.E. Spinney, I.J. Ford, Phys. Rev. E 85, 51113 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    H.K. Lee, C. Kwon, H. Park, Phys. Rev. Lett. 110, 050602 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    S. Sasa, J. Stat. Mech. 2014, P01004 (2014) CrossRefMathSciNetGoogle Scholar
  17. 17.
    V.Y. Chernyak, M. Chertkov, C. Jarzynski, J. Stat. Mech. 2006, P08001 (2006) CrossRefGoogle Scholar
  18. 18.
    O. Narayan, A. Dhar, J. Phys. A 37, 63 (2004) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    K. Sekimoto, J. Phys. Soc. Jpn 66, 1234 (1997) ADSCrossRefGoogle Scholar
  20. 20.
    K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    G.E. Crooks, J. Stat. Phys. 90, 1481 (1998) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    G.E. Crooks, Phys. Rev. E 61, 2361 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    P. Talkner, M. Campisi, P. Hänggi, J. Stat. Mech. 2009, P02025 (2009) CrossRefGoogle Scholar
  25. 25.
    J.D. Noh, J. Park, Phys. Rev. Lett. 108, 240603 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    G.E. Crooks, Phys. Rev. E 60, 2721 (1999) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Korea Institute for Advanced StudySeoulRepublic of Korea
  2. 2.Institute of PhysicsBhubaneswarIndia

Personalised recommendations