Majorana fermions in honeycomb lattices

  • Clément Dutreix
  • Marine Guigou
  • Denis Chevallier
  • Cristina Bena
Regular Article

Abstract

We study the formation of Majorana fermions in honeycomb-lattice structures in the presence of a Zeeman field, Rashba spin-orbit coupling, and in the proximity of an s-wave superconductor. We show that an exact mapping exists between an anisotropic hexagonal-lattice nanoribbon at k = 0 and a one-dimensional chain, for which the existence of Majorana fermions has been extensively discussed. Consequently we can find the conditions for the emergence of Majorana fermions in such a ribbon for particular values of the chemical potential such as the top or the bottom of the band, and the Van Hove singularities, and relate the existence of Majoranas to a band inversion in the bulk band structure. Moreover we find that similar situations arise in anisotropic lattices and we give some examples which show the formation of Majorana fermions in these structures.

Keywords

Solid State and Materials 

References

  1. 1.
    E. Majorana, Il Nuovo Cimento 14, 171 (1937)CrossRefGoogle Scholar
  2. 2.
    C.W.J. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    N. Read, D. Green, Phys. Rev. B 61, 10267 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Tanaka, T. Yokoyama, N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Sato, S. Fujimoto, Phys. Rev. B 79, 094504 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A.C. Potter, P.A. Lee, Phys. Rev. B 83, 094525 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    C.L.M. Wong, J. Liu, K.T. Law, P.A. Lee, Phys. Rev. B 88, 060504(R) (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A. Cook, M. Franz, Phys. Rev. B 84, 201105(R) (2011)ADSCrossRefGoogle Scholar
  13. 13.
    R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    A.Y. Kitaev, Phys.-Usp. 44, 131 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    K. Bjornson, A.M. Black-Schaffer, Phys. Rev. B 88, 024501 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    C. Chamon, C.-Y. Hou, C. Mudry, S. Ryu, L. Santos, Phys. Scr. T 146, 014013 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Sato, Y. Tanaka, K. Yada, T. Yokoyama, Phys. Rev. B 83, 224511 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A.M. Black-Schaffer, Phys. Rev. Lett. 109, 197001 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J. Klinovaja, G.J. Ferreira, D. Loss, Phys. Rev. B 86, 235416 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J. Klinovaja, D. Loss, Phys. Rev. X 3, 011008 (2013)Google Scholar
  23. 23.
    J. Klinovaja, D. Loss, Phys. Rev. B 88, 075404 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    M. Bellec, U. Kuhl, G. Montambaux, F. Mortessagne, Phys. Rev. Lett. 110, 033902 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger, Nature 483, 302 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    K.K. Gomes, W. Mar, W. Ko, F. Guinea, H.C. Manoharan, Nature 483, 306 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Hasegawa, R. Konno, H. Nakano, M. Kohmoto, Phys. Rev. B 74, 033413 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    G. Montambaux, F. Piéchon, J.-N. Fuchs, M.O. Goerbig, Phys. Rev. B 80, 153412 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    D. Sticlet, C. Bena, P. Simon, Phys. Rev. Lett. 108, 096802 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    D. Chevallier, D. Sticlet, P. Simon, C. Bena, Phys. Rev. B 85, 235307 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    C. Dutreix, in preparationGoogle Scholar
  32. 32.
    N. Sedlmayr, J.-M. Aguiar-Hualde, C. Bena, arXiv:1410.1734 (2014)Google Scholar
  33. 33.
    D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Phys. Rev. B 74, 165310 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, Z. Fang, Phys. Rev. B 75, 041401 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    D.K. Efetov, Ph. Kim, Phys. Rev. Lett. 105, 256805 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    M. Zarea, N. Sandler, Phys. Rev. B 79, 165442 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    J.L. McChesney, A. Bostwick, T. Ohta, T. Seyller, K. Horn, J. Gonzalez, E. Rotenberg, Phys. Rev. Lett. 104, 136803 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    O. Shevtsov, P. Carmier, C. Groth, X. Waintal, D. Carpentier, Phys. Rev. B 85, 245441 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    J. Hu, J. Alicea, R. Wu, M. Franz, Phys. Rev. Lett. 109, 266801 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Clément Dutreix
    • 1
    • 2
  • Marine Guigou
    • 1
    • 2
  • Denis Chevallier
    • 1
    • 2
  • Cristina Bena
    • 1
    • 2
  1. 1.Laboratoire de Physique des SolidesOrsayFrance
  2. 2.Institut de Physique Théorique, CEA/SaclayGif-sur-Yvette CedexFrance

Personalised recommendations