Advertisement

Regular and chaotic regimes in Saltzman model of glacial climate dynamics under the influence of additive and parametric noise

  • Dmitry V. Alexandrov
  • Irina A. Bashkirtseva
  • Sergei P. Fedotov
  • Lev B. RyashkoEmail author
Regular Article

Abstract

It is well-known that the climate system, due to its nonlinearity, can be sensitive to stochastic forcing. New types of dynamical regimes caused by the noise-induced transitions are revealed on the basis of the classical climate model previously developed by Saltzman with co-authors and Nicolis. A complete parametric classification of dynamical regimes of this deterministic model is carried out. On the basis of this analysis, the influence of additive and parametric noises is studied. For weak noise, the climate system is localized nearby deterministic attractors. A mixture of the small and large amplitude oscillations caused by noise-induced transitions between equilibria and cycle attraction basins arise with increasing the noise intensity. The portion of large amplitude oscillations is estimated too. The parametric noise introduced in two system parameters demonstrates quite different system dynamics. Namely, the noise introduced in one system parameter increases its dispersion whereas in the other one leads to the stabilization of the climatic system near its unstable equilibrium with transitions from order to chaos.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    K.G. Miller, G.S. Mountain, J.D. Wright, J.V. Browning, Oceanogr. 24, 40 (2011) CrossRefGoogle Scholar
  2. 2.
    B. de Boer, R.S.W. van de Wal, L.J. Lourens, R. Bintanja, T.J. Reerink, Clim. Dyn. 41, 1365 (2013) CrossRefGoogle Scholar
  3. 3.
    A.M. Selvam, Chaotic Climate Dynamics (Luniver Press, UK, 2007) Google Scholar
  4. 4.
    M. Crucifix, Philos. Trans. R. Soc. A 370, 1140 (2012) CrossRefADSGoogle Scholar
  5. 5.
    B. Saltzman, Dynamical Paleoclimatology (Academic Press, San Diego, 2002) Google Scholar
  6. 6.
    C. Nicolis, Tellus 39A, 1 (1987) MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    J. Jouzel, V. Masson-Delmotte, WIREs Clim. Change 1, 654 (2010) CrossRefGoogle Scholar
  8. 8.
    N. Scafetta, J. Atm. Solar Terrest. Phys. 72, 951 (2010) CrossRefADSGoogle Scholar
  9. 9.
    R.B. Alley, J. Marotzke, W.D. Nordhaus, J.T. Overpeck, D.M. Peteet, R.A. Pielke Jr., R.T. Pierrehumbert, P.B. Rhines, T.F. Stocker, L.D. Talley, J.M. Wallace, Science 299, 2005 (2003) CrossRefADSGoogle Scholar
  10. 10.
    J. Thurow, L.C. Peterson, U. Harms, D.A. Hodell, H. Cheshire, H.-J. Brumsack, T. Irino, M. Schulz, V. Masson-Delmotte, R. Tada, Sci. Drill. 8, 46 (2009) CrossRefGoogle Scholar
  11. 11.
    J.W.C. White, R.B. Alley, J. Brigham-Grette, J.J. Fitzpatrick, A.E. Jennings, S.-J. Johnsen, G.H. Miller, R.S. Nerem, L. Polyak, Quarter. Sci. Rev. 29, 1716 (2010) CrossRefADSGoogle Scholar
  12. 12.
    J. Holmes, J. Lowe, E. Wolff, M. Srokosz, Glob. Planet. Change 79, 157 (2011) CrossRefADSGoogle Scholar
  13. 13.
    B. Saltzman, Adv. Geophys. 20, 183 (1978) CrossRefADSGoogle Scholar
  14. 14.
    B. Saltzman, R.E. Moritz, Tellus 32, 93 (1980) CrossRefADSGoogle Scholar
  15. 15.
    B. Saltzman, A. Sutera, A. Evenson, J. Atm. Sci. 38, 494 (1981) CrossRefADSGoogle Scholar
  16. 16.
    B. Saltzman, Tellus 34, 97 (1982) CrossRefADSGoogle Scholar
  17. 17.
    C. Nicolis, Tellus 36A, 1 (1984) MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    C. Nicolis, J. Stat. Phys. 70, 3 (1993) CrossRefzbMATHADSGoogle Scholar
  19. 19.
    L. Arnold, Random Dynamical Systems (Springer-Verlag, 1998) Google Scholar
  20. 20.
    W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984) Google Scholar
  21. 21.
    S. Fedotov, I. Bashkirtseva, L. Ryashko, Phys. Rev. E 66, 066310 (2002) CrossRefADSGoogle Scholar
  22. 22.
    S. Fedotov, I. Bashkirtseva, L. Ryashko, Phys. Rev. E 73, 066307 (2006) MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Eur. Phys. J. B 69, 1 (2009) CrossRefADSGoogle Scholar
  24. 24.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001) Google Scholar
  25. 25.
    I. Bashkirtseva, L. Ryashko, Chaos 21, 047514 (2011) CrossRefADSGoogle Scholar
  26. 26.
    D.V. Alexandrov, I.A. Bashkirtseva, A.P. Malygin, L.B. Ryashko, Pure Appl. Geophys. 170, 2273 (2013) CrossRefADSGoogle Scholar
  27. 27.
    P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992) Google Scholar
  28. 28.
    P. Walters, An Introduction to Ergodic Theory (Springer, 1982) Google Scholar
  29. 29.
    G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Meccanica 15, 9 (1980) CrossRefzbMATHADSGoogle Scholar
  30. 30.
    P.D. Ditlevsen, M.S. Kristensen, K.K. Andersen, J. Climate 18, 2594 (2005) CrossRefADSGoogle Scholar
  31. 31.
    P.D. Ditlevsen, H. Svensmark, S. Johnsen, Nature 379, 810 (1996) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dmitry V. Alexandrov
    • 1
  • Irina A. Bashkirtseva
    • 1
  • Sergei P. Fedotov
    • 2
  • Lev B. Ryashko
    • 1
    Email author
  1. 1.Department of Mathematical PhysicsUral Federal UniversityEkaterinburgRussia
  2. 2.School of Mathematics, The University of ManchesterManchesterUK

Personalised recommendations