Pressure-induced structural transition in amorphous GeO2: a molecular dynamics simulation

  • Joaquín PeraltaEmail author
  • Gonzalo Gutiérrez
Regular Article


We studied the structural and dynamical properties of amorphous germanium dioxide (GeO2) from low to high pressure by means of the classical molecular dynamics technique. The simulations were done in the micro-canonical ensemble, with systems at densities ranged from 3.16 to 6.79 g/cm3, using a pairwise potential. The network topology of the systems is analyzed at atomic level through partial pair correlations, coordination number and angular distributions. The dynamic properties were characterized by means of the vibrational density of states. According the density increases, a structural transformation from a short-range order, defined by a building block composed by a basic (GeO4) tetrahedron, to a basic (GeO6) octahedron is observed. The vibrational density of states also presents important changes when the density increases, with a low frequency band lessened, and a high density band wider and flatter.


Solid State and Materials 


  1. 1.
    P. Salmon, A. Barnes, R. Martin, G. Cuello, J. Phys.: Condens. Matter 19, 22 (2007)Google Scholar
  2. 2.
    Q. Mei, S. Sinogeikin, G. Shen, S. Amin, J. Benmore, K. Ding, Phys. Rev. B 81, 174113 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J.W.E. Drewitt, P.S. Salmon, A.C. Barnes, S. Klotz, H.E. Fischer, W.A. Crichton, Phys. Rev. B 81, 014202 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    T. Tsuchiya, T. Yamanaka, M. Matsui, Phys. Chem. Miner. 27, 149 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    G. Gutiérrez, J. Rogan, Phys. Rev. E 69, 031201 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    S. Ono, T. Tsuchiya, K. Hirose, Y. Ohishi, Phys. Rev. B 68, 134108 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M. Micoulaut, Y. Guissani, B. Guillot, Phys. Rev. E 73, 031504 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    L. Giacomazzi, P. Umari, A. Pasquarello, Phys. Rev. B 74, 155208 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    T. Li, S. Huang, J. Zhu, Chem. Phys. Lett. 471, 253 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D. Marrocchelli, M. Salanne, P.A. Madden, J. Phys.: Condens. Matter 22, 152102 (2010)ADSGoogle Scholar
  11. 11.
    V.P. Prakapenka, G. Shen, L. Dubrovinsky, M. Rivers, S.R. Sutton, J. Phys. Chem. Solids 65, 1537 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    K. Muralidharan, J. Simmons, P. Deymier, K. Runge, J. Non-Cryst. Solids 351, 1532 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    A. Walcarius, Electroanalysis 10, 1217 (1998)CrossRefGoogle Scholar
  14. 14.
    D.G. Chen, B. Potter, J. Simmons, J. Non-Cryst. Solids 178, 135 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, M. Douay, J. Non-Cryst. Solids 260, 83 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    J. Ballato, T. Hawkins, P. Foy, S. Morris, N.K. Hon, B. Jalali, R. Rice, Opt. lett. 36, 687 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    V. Mizrahi, P.J. Lemaire, T. Erdogan, W.A. Reed, D.J. DiGiovanni, R.M. Atkins, Appl. Phys. Lett. 63, 1727 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    S. Uehara, K. Momono, Optical glass, US Patent 8, 207,075 (2012)
  19. 19.
    M.I. Ojovan, W.B.E. Lee, J. Non-Cryst. Solids 356, 2534 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S. Kohara, K. Suzuya, J. Phys.: Condens. Matter 17, S77 (2005)ADSGoogle Scholar
  21. 21.
    M. Micoulaut, A. Kachmar, T. Charpentier, Phys. Stat. Sol. B 249, 1890 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    C.A. Angell, P.H. Poole, J. Shao, Il Nuovo Cimento D 16, 993 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    R.L. Parc, C. Levelut, J. Pelous, V. Martinez, B. Champagnon, J. Phys.: Condens. Matter 21, 079802 (2008)ADSGoogle Scholar
  24. 24.
    M. Agarwal, A. Ganguly, C. Chakravarty, J. Phys. Chem. B 113, 15284 (2009)CrossRefGoogle Scholar
  25. 25.
    K.H. Smith, E. Shero, A. Chizmeshya, G.H. Wold, J. Chem. Phys. 102, 6851 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    D.J. Durben, G.H. Wolf, Phys. Rev. B 43, 2355 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    M. Vaccari, G. Aquilanti, S. Pascarelli, O. Mathon, J. Phys.: Condens. Matter 21, 145403 (2009)ADSGoogle Scholar
  28. 28.
    P.S. Salmon, J.W.E. Drewitt, D.A.J. Whittaker, A. Zeidler, K. Wezka, C.L. Bull, M.G. Tucker, M.C. Wilding, M. Guthrie, D. Marrocchelli, J. Phys.: Condens. Matter 24, 439601 (2012)ADSGoogle Scholar
  29. 29.
    K. Wezka, P.S. Salmon, A. Zeidler, D.A.J. Whittaker, J.W.E. Drewitt, S. Klotz, H.E. Fischer, D. Marrocchelli, J. Phys.: Condens. Matter 24, 502101 (2012)Google Scholar
  30. 30.
    T. Tsuchiya, T. Yamanaka, M. Matsui, Phys. Chem. Miner. 25, 94 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    J. Peralta, G. Gutiérrez, J. Rogan, J. Phys.: Condens. Matter 20, 145215 (2008)ADSGoogle Scholar
  32. 32.
    D. Marrocchelli, M. Salanne, P. Madden, C. Simon, P. Turq, Mol. Phys. 107, 443 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    R. Oeffner, S. Elliott, Phys. Rev. B 58, 14791 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    O.B. Tsiok, V.V. Brazhkin, A.G. Lyapin, L.G. Khvostantsev, Phys. Rev. Lett. 80, 999 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    K. Refson, Comput. Phys. Commun. 126, 310 (2000)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    K. Vollmayr, W. Kob, K. Binder, Phys. Rev. B 54, 15808 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Liang, C. Miranda, S. Scandolo, High Press. Res. 28, 35 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    X. Hong, G. Shen, V. Prakapenka, M. Newville, M. Rivers, S. Sutton, Phys. Rev. B 75, 104201 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    S. Davis, C. Loyola, F. Gonzalez, J. Peralta, Comput. Phys. Commun. 181, 2126 (2010)ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    C.E. Stone, A.C. Hannon, T. Ishihara, N. Kitamura, Y. Shirakawa, R.N. Sinclair, N. Umesaki, A.C. Wright, J. Non-Cryst. Solids 293-295, 769 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    X. Zhu, L. Chen, Physica B 404, 4178 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    L. Ting, H. Shiping, Z. Jiqin, Chem. Phys. Lett. 471, 253 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Micoulaut, X. Yuan, L. Hobbs, J. Non-Cryst. Solids 353, 1961 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    E. Lorch, J. Phys. Chem. 2, 229 (1969)Google Scholar
  45. 45.
    P. Salmon, Proc. R. Soc. Lond. A 445, 351 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    P. Vashishta, R.K. Kalia, J.P. Rino, I. Ebbsjö, Phys. Rev. B 41, 12197 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    L. Koester, H. Rauch, M. Herkens, K. Schröder, Summary of neutron scattering lengths, KFA Jülich Report Jül-1755, 1981Google Scholar
  48. 48.
    D.T. Cromer, J.T. Weber, in International Tables for X-Ray Crystallography, edited by J.A. Ibers, W.C. Hamilton (Kynoch Press, Birmingham, 1974), p. 71Google Scholar
  49. 49.
    M. Tokonami, Acta Cryst. 19, 486 (1965)CrossRefGoogle Scholar
  50. 50.
    R.J. Bell, Rep. Prog. Phys. 35, 1315 (1972)ADSCrossRefGoogle Scholar
  51. 51.
    S. Davis, A.B. Belonoshko, B. Johansson, A. Rosengren, Phys. Rev. B 84, 064102 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de Ciencias Exactas, Universidad Andrés BelloSantiagoChile
  2. 2.Departamento de Física, Facultad de Ciencias, Universidad de ChileSantiagoChile

Personalised recommendations