Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks

Regular Article

Abstract

We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and three networks of Wikipedia editions in English, French and German. We argue that due to absence of level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law implies that the nearby PageRank probabilities fluctuate as random independent variables.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    S. Brin, L. Page, Comput. Networks and ISDN Systems 30, 107 (1998)CrossRefGoogle Scholar
  2. 2.
    A.M. Langville, C.D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings (Princeton University Press, Princeton, 2006)Google Scholar
  3. 3.
    S. Redner, Phys. Today 58, 49 (2005)CrossRefGoogle Scholar
  4. 4.
    F. Radicchi, S. Fortunato, B. Markines, A. Vespignani, Phys. Rev. E 80, 056103 (2009)CrossRefADSGoogle Scholar
  5. 5.
    A.O. Zhirov, O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. B 77, 523 (2010)CrossRefADSGoogle Scholar
  6. 6.
    Y.-H. Eom, K.M. Frahm, A. Benczur, D.L. Shepelyansky, Eur. Phys. J. B 86, 492 (2013)CrossRefADSGoogle Scholar
  7. 7.
    Y.-H. Eom, D.L. Shepelyansky, PLoS ONE 8, e74554 (2013)CrossRefADSGoogle Scholar
  8. 8.
    L. Ermann, D.L. Shepelyansky, Acta Phys. Pol. A 120, A158 (2011)Google Scholar
  9. 9.
    G.W. Stewart, Matrix Algorithms Volume II: Eigensystems (SIAM, 2001)Google Scholar
  10. 10.
    K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 76, 57 (2010)CrossRefMATHMathSciNetADSGoogle Scholar
  11. 11.
    K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 85, 355 (2012)CrossRefADSGoogle Scholar
  12. 12.
    L.D. Landau, E.M. Lifshitz, Statistical Mechanics (Nauka, Moskva, 1976) (in Russian), Vol. 5Google Scholar
  13. 13.
    M.L. Mehta, Random Matrices (Elsevier-Academic Press, Amsterdam, 2004)Google Scholar
  14. 14.
    F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2010)Google Scholar
  15. 15.
    L. Bunimovich, Scholarpedia 2, 1813 (2007)CrossRefADSGoogle Scholar
  16. 16.
    O. Bohigas, M.-J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984)CrossRefMATHMathSciNetADSGoogle Scholar
  17. 17.
    H.-J. Stöckmann, Scholarpedia 5, 10243 (2010)CrossRefADSGoogle Scholar
  18. 18.
  19. 19.
    K.M. Frahm, Y.-H. Eom, D.L. Shepelyansky, arXiv:1310.5624 [physics.soc-ph] (2013)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique du CNRS, IRSAMCUniversité de Toulouse, UPSToulouseFrance

Personalised recommendations