Calculating thermal conductivity in a transient conduction regime: theory and implementation

  • Claudio Melis
  • Riccardo Dettori
  • Simon Vandermeulen
  • Luciano Colombo
Regular Article

Abstract

We present a molecular dynamics method addressed to the calculation of the lattice thermal conductivity during the transient regime of approach to equilibrium from an initial condition of nonuniform temperature profile. We thoroughly assess the basics, the robustness, and the accuracy of the method, in particular by showing that its results are basically independent of most of the arbitrary simulation parameters. In addition, the method here presented is computationally light, thus paving the way for the investigation of large systems. This feature is fully exploited to investigate the thermal transport properties of disordered and nanostructured silicon samples, providing a clear atomistic picture on the ability of grain boundaries and lattice disorder to affect thermal conductivity by improved scattering of vibrational modes with long mean free path.

Keywords

Computational Methods 

References

  1. 1.
    T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer (John Wileys & Sons, USA, 2002) Google Scholar
  2. 2.
    J.H. Lienhard IV, J.H. Lienhard V, A heat transfer textbook (Phlogiston Press, Cambridge, 2006) Google Scholar
  3. 3.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, Adv. Mater. 19, 1043 (2007) CrossRefGoogle Scholar
  4. 4.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466 (2009) CrossRefGoogle Scholar
  5. 5.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    G.S. Nolas, J. Sharp, H. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001) Google Scholar
  7. 7.
    K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. McGaughey, J.A. Malen, Nat. Commun. 4, 1640 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    P.K. Schelling, S.R. Phillpot, P. Keblinski, Phys. Rev. B 65, 144306 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    Y. He, I. Savić, D. Donadio, G. Galli, Phys. Chem. Chem. Phys. 14, 16209 (2012) CrossRefGoogle Scholar
  10. 10.
    J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Phys. Rev. Lett. 106, 045901 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    J.-S. Wang, J. Wang, J.T. Lu, Eur. Phys. J. B 62, 381 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    E. Lampin, P.L. Palla, P.-A. Francioso, F. Cleri, J. Appl. Phys. 114, 033525 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    E. Lampin, Q.-H. Nguyen, P.A. Francioso, F. Cleri, Appl. Phys. Lett. 100, 131906 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    C. Melis, L. Colombo, Phys. Rev. Lett. 112, 065901 (2014) ADSCrossRefGoogle Scholar
  15. 15.
    D.A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, 2000) Google Scholar
  16. 16.
    F. Müller-Plate, J. Chem. Phys. 106, 6082 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    A.J.H. McGaughey, C.H. Amon, J.E. Turney, E.S. Landry, Phys. Rev. B 79, 064301 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Sanders International Editions, London, 1976) Google Scholar
  19. 19.
    C.J. Glassbrenner, G.A. Slack, Phys. Rev. 137, A1058 (1964) CrossRefGoogle Scholar
  20. 20.
    C. Abs da Cruz, K. Termentzidis, P. Chantrenne, X. Kleber, J. Appl. Phys. 110, 034309 (2011) CrossRefGoogle Scholar
  21. 21.
    P.C. Howell, J. Chem. Phys. 137, 224111 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995). See also the following site: http://lammps.sandia.gov URLADSCrossRefMATHGoogle Scholar
  23. 23.
    J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, S. Yip, Phys. Rev. B 58, 2539 (1998) ADSCrossRefGoogle Scholar
  24. 24.
    D.P. Sellan, E.S. Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Phys. Rev. B 81, 214305 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    W. Jang, J.E. Garay, C. Dames, Z. Wang, J.E. Alaniz, Nano Lett. 6, 2206 (2011) Google Scholar
  26. 26.
    A. Mattoni, L. Colombo, Phys. Rev. B 78, 075408 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    Y. He, D. Donadio, G. Galli, Appl. Phys. Lett. 98, 144101 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    J. Cue, J.K. Eliason, A.J. Minnich, T. Kehoe, C.M.S. Torres, G. Chen, K.A. Nelson, J.A. Johnson, A.A. Maznev, Phys. Rev. Lett. 110, 1079 (2010) Google Scholar
  29. 29.
    G. Chen A.S. Henry, J. Comput. Theor. Nanosci. 5, 1 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claudio Melis
    • 1
  • Riccardo Dettori
    • 1
  • Simon Vandermeulen
    • 1
  • Luciano Colombo
    • 1
  1. 1.Dipartimento di Fisica, Università di Cagliari Cittadella UniversitariaMonserratoItaly

Personalised recommendations