The origins of multifractality in financial time series and the effect of extreme events

Regular Article

Abstract

This paper presents the results of multifractal testing of two sets of financial data: daily data of the Dow Jones Industrial Average (DJIA) index and minutely data of the Euro Stoxx 50 index. Where multifractal scaling is found, the spectrum of scaling exponents is calculated via Multifractal Detrended Fluctuation Analysis. In both cases, further investigations reveal that the temporal correlations in the data are a more significant source of the multifractal scaling than are the distributions of the returns. It is also shown that the extreme events which make up the heavy tails of the distribution of the Euro Stoxx 50 log returns distort the scaling in the data set. The most extreme events are inimical to the scaling regime. This result is in contrast to previous findings that extreme events contribute to multifractality.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    P. Grassberger, Phys. Lett. A 97, 227 (1983)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141 (1986) ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    T.C. Halsey, P. Meakin, I. Procaccia, Phys. Rev. Lett. 56, 854 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    W.G. Hanan, D.M. Heffernan, Phys. Rev. E 85, 021407 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    W.G. Hanan, D.M. Heffernan, Phys. Rev. E 77, 011405 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    H.E. Stanley, P. Meakin, Nature 335, 405 (1988) ADSCrossRefGoogle Scholar
  7. 7.
    A. Cummings, G. O’Sullivan, W.G. Hanan, D.M. Heffernan, J. Phys. B 34, 2547 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    W.G. Hanan, D.M. Heffernan, J.C. Earnshaw, Chaos Solitons Fractals 9, 875 (1998)ADSCrossRefMATHGoogle Scholar
  9. 9.
    B.B. Mandelbrot, J. Fluid Mech. 62, 331 (1974)ADSCrossRefMATHGoogle Scholar
  10. 10.
    P. Ivanov, L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Struzik, H. Stanley, Nature 399, 461 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Zheng, J. Gao, J.C. Sanchez, J.C. Principe, M.S. Okun, Phys. Lett. A 344, 253 (2005) ADSCrossRefMATHGoogle Scholar
  12. 12.
    E.A. Ihlen, Front. Physio. 3, 141 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A. Feldmann, A.C. Gilbert, W. Willinger, SIGCOMM Comput. Commun. Rev. 28, 42 (1998)CrossRefGoogle Scholar
  14. 14.
    N. Sala, in Thinking in Patterns: Fractals and Related Phenomena in Nature, edited by M.M. Novak (World Scientific, Singapore, 2004)Google Scholar
  15. 15.
    B.B. Mandelbrot, R. Hudson, On the (mis) Behaviour of Markets, a Fractal View of Risk, Ruin and Reward (Profile Books, London, 2005)Google Scholar
  16. 16.
    Ł. Czarnecki, D. Grech, Acta Physica Polonica A 117, 623 (2010) Google Scholar
  17. 17.
    A. Turiel, C.J. Pérez-Vicente, Physica A 322, 629 (2003) ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    R. Cont, Quant. Finance 1, 223 (2001)CrossRefGoogle Scholar
  19. 19.
    B.B. Mandelbrot, in Thinking in Patterns: Fractals and Related Phenomena in Nature, edited by M.M. Novak (World Scientific, Singapore, 2004)Google Scholar
  20. 20.
    W.X. Zhou, Europhys. Lett. 88, 28004 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    V. Romanov, V. Slepov, M. Badrina, A. Federyakov, in Computational Finance and Its Applications III, edited by M. Constantino, M. Larran, C.A. Brebbia (WIT Press, 2008), pp. 13–22Google Scholar
  22. 22.
    K. Matia, Y. Ashkenazy, H.E. Stanley, Europhys. Lett. 61, 422 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    P. Suárez-García, D. Gómez-Ullate, Physica A 394, 226 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    B.B. Mandelbrot, A.J. Fisher, L.E. Calvet, A Multifractal Model of Asset Returns (Cowles Foundation, 1997) Google Scholar
  25. 25.
    R.F. Engle, Econometrica 50, 987 (1982)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Physica A 316, 87 (2002)ADSCrossRefMATHGoogle Scholar
  27. 27.
    J.-F. Muzy, E. Bacry, A. Arneodo, Int. J. Bifurc. Chaos 4, 245 (1994)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    J.-F. Muzy, E. Bacry, A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991) ADSCrossRefGoogle Scholar
  29. 29.
    P. Oświȩcimka, J. Kwapień, S. Drożdż, Phys. Rev. E 74, 016103 (2006) CrossRefGoogle Scholar
  30. 30.
    P. Oświȩcimka, J. Kwapień, S. Drożdż, R. Rak, Acta Physica Polonica B 36, 2447 (2005) ADSGoogle Scholar
  31. 31.
    A.Y. Schumann, J.W. Kantelhardt, Physica A 390, 2637 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    Z. Yu, L. Yee, Y. Zu-Guo, Chin. Phys. B 20, 090507 (2011) CrossRefGoogle Scholar
  33. 33.
    P. Jizba, J. Korbel, Methods and techniques for multifractal spectrum estimation in financial time series, in Proceedings ASMDA, 2013 Google Scholar
  34. 34.
    T. Lux, Int. J. Mod. Phys. C 15, 481 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    W.X. Zhou, Chaos Solitons Fractals 45, 147 (2012)ADSCrossRefMATHGoogle Scholar
  36. 36.
    J.-P. Bouchaud, M. Potters, M. Meyer, Eur. Phys. J. B 13, 595 (2000)ADSGoogle Scholar
  37. 37.
    J. Gierałtowski, J.J. Żebrowski, R. Baranowski, Phys. Rev. E 85, 021915 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    J.R. Thompson, Analysis of Market Returns Using Multifractal Time Series and Agent-Based Simulation, Ph.D. thesis, Raleigh, 2013 Google Scholar
  39. 39.
    M. Segnon, T. Lux, Multifractal models in finance: Their origin, properties, and applications, Technical report, Kiel Working Paper, 2013Google Scholar
  40. 40.
    W.S. Kendal, Physica A 401, 22 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    W.S. Kendal, B. Jørgensen, Phys. Rev. E 84, 066120 (2011) ADSCrossRefGoogle Scholar
  42. 42.
    J. Barunik, T. Aste, T. Di Matteo, R. Liu, Physica A 391, 4234 (2012) ADSCrossRefGoogle Scholar
  43. 43.
    S. Kumar, N. Deo, Physica A 388, 1593 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    G. Oh, C. Eom, S. Havlin, W.S. Jung, F. Wang, H.E. Stanley, S. Kim, Eur. Phys. J. B 85, 214 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    J. Kwapień et al., Physica A 350, 466 (2005) ADSCrossRefGoogle Scholar
  46. 46.
    Y. Wang, C. Wu, Z. Pan, Physica A 390, 3512 (2011) ADSCrossRefGoogle Scholar
  47. 47.
    D. Sornette, Phys. Rep. 378, 1 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    V.S. L’vov, A. Pomyalov, I. Procaccia, Phys. Rev. E 63, 056118 (2001) ADSCrossRefGoogle Scholar
  49. 49.
    D. Sornette, Int. J. Terraspace Sci. Eng. 2, 1 (2009)Google Scholar
  50. 50.
    S. Benbachir, M. El Alaoui, Int. Res. J. Finance Econ. 78, 6 (2011)Google Scholar
  51. 51.
    P. Norouzzadeh, B. Rahmani, Physica A 367, 328 (2006) ADSCrossRefGoogle Scholar
  52. 52.
    H. Chen, C. Wu, Physica A 390, 2926 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematical PhysicsNational University of Ireland MaynoothMaynooth, Co. KildareIreland
  2. 2.School of Theoretical PhysicsDublin Institute for Advanced Studies4 DublinIreland

Personalised recommendations