Advertisement

Preferential sites for InAsP/InP quantum wire nucleation using molecular dynamics

  • Bernardo Nuñez-Moraleda
  • Joaquin Pizarro
  • Elisa Guerrero
  • Maria P. Guerrero-Lebrero
  • Andres Yáñez
  • Sergio Ignacio Molina
  • Pedro Luis Galindo
Regular Article
  • 99 Downloads

Abstract

In this paper, stress fields at the surface of the capping layer of self-assembled InAsP quantum wires grown on an InP (001) substrate have been determined from atomistic models using molecular dynamics and Stillinger-Weber potentials. To carry out these calculations, the quantum wire compositional distribution was extracted from previous works, where the As and P distributions were determined by electron energy loss spectroscopy and high-resolution aberration-corrected Z-contrast imaging. Preferential sites for the nucleation of wires on the surface of the capping layer were studied and compared with (i) previous simulations using finite element analysis to solve anisotropic elastic theory equations and (ii) experimentally measured locations of stacked wires. Preferential nucleation sites of stacked wires were determined by the maximum stress location at the MD model surface in good agreement with experimental results and those derived from finite element analysis. This indicates that MD simulations based on empirical potentials provide a suitable and flexible tool to study strain dependent atom processes.

Keywords

Computational Methods 

References

  1. 1.
    W. Lei, Y.H. Chen, Y.L. Wang, B. Xu, X.L. Ye, Y.P. Zeng, J. Cryst. Growth 284, 20 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    D. Fuster, M. Ujué, L. González, Y. González, T. Ben, A. Ponce, S.I. Molina, Appl. Phys. Lett. 84, 4723 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    H.J. Parry, M.J. Ashwin, J.H. Neave, J. Cryst. Growth 278, 131 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    S.I. Molina, T. Ben, D.L. Sales, J. Pizarro, P.L. Galindo, M. Varela, S.J. Pennycook, D. Fuster, Y. González, L. González, Nanotechnology 17, 5652 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    D.C. Rapaport, The art of molecular dynamics simulation (Cambridge University Press, 2004)Google Scholar
  6. 6.
    F. Ercolessi, A molecular dynamics primer (Spring College, Computational Physics, ICTP, Trieste, 1997)Google Scholar
  7. 7.
    F. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    A.K. Subramaniyan, Int. J. Solids Struct. 45, 4340 (2008)CrossRefMATHGoogle Scholar
  9. 9.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefMATHGoogle Scholar
  10. 10.
    S.I. Molina, M. Varela, T. Ben, D.L. Sales, J. Pizarro, P.L. Galindo, D. Fuster, Y. González, L. González, S.J. Pennycook, J. Nanosci. Nanotechnol. 8, 3422 (2008)CrossRefGoogle Scholar
  11. 11.
    R.T. Downs, M. Hall-Wallace, Am. Mineral. 88, 247 (2003)Google Scholar
  12. 12.
    M. Tadic, F.M. Peeters, K.L. Janssens, J. Appl. Phys. 92, 5819 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bernardo Nuñez-Moraleda
    • 1
  • Joaquin Pizarro
    • 1
  • Elisa Guerrero
    • 1
  • Maria P. Guerrero-Lebrero
    • 1
  • Andres Yáñez
    • 1
  • Sergio Ignacio Molina
    • 2
  • Pedro Luis Galindo
    • 1
  1. 1.Department Ingeniería Informática, C/ Chile S/NUniversidad de CádizCádizSpain
  2. 2.Instituto de Microscopía Electrónica y Materiales, Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de CienciasUniversidad de CádizPuerto RealSpain

Personalised recommendations