Electron energy spectrum for a bent chain of nanospheres

  • Dmitry A. Eremin
  • Dmitry A. Ivanov
  • Igor Yu. Popov
Regular Article

Abstract

An infinite bent chain of nanospheres connected by wires is considered. We assume that there are δ-like potentials at the contact points. A solvable mathematical model based on the theory of self-adjoint extensions of symmetric operators is constructed. The spectral equation for the model operator is derived in an explicit form. It is shown that the Hamiltonian has non-empty point spectrum. The positions of the eigenvalues for different values of the system parameters (the length of the connecting wires, the intensities of δ-interactions and the bent angle) are found.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    F. Sols, Ann. Phys. 214, 386 (1992)CrossRefADSGoogle Scholar
  2. 2.
    V.A. Geyler, I.Yu. Popov, Theor. Math. Phys. 107, 12 (1996)Google Scholar
  3. 3.
    G. Martin, A.M. Yafyasov, B.S. Pavlov, Nanosystems: Phys. Chem. Math. 1, 108 (2010)Google Scholar
  4. 4.
    I.Yu. Popov, S.A. Osipov, Chin. Phys. B 21, 117306 (2012)CrossRefADSGoogle Scholar
  5. 5.
    P. Kuchment, B. Vainberg, Commun. Math. Phys. 268, 673 (2006)CrossRefMATHMathSciNetADSGoogle Scholar
  6. 6.
    P. Duclos, P. Exner, O. Turek, J. Phys. A 41, 415206 (2008)CrossRefMathSciNetGoogle Scholar
  7. 7.
    I.Yu. Popov, P.I. Smirnov, Phys. Lett. A 377, 439 (2013)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    I. Yu. Popov, A.N. Skorynina, I.V. Blinova, J. Math. Phys. 55, 033504 (2014)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    S.V. Rotkin, Sh. Subramoney, Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices (Springer, Berlin, 2006)Google Scholar
  10. 10.
    Y. Wang, H.J. Zhang, L. Lu, L.P. Stubbs, C.C. Wong, J. Lin, ACS Nano, 4, 4753 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Yang, L. Li, W. Li, J. Phys. Chem. C 117, 14142 (2013)CrossRefADSGoogle Scholar
  12. 12.
    A.N. Enyashin, A.L. Ivanovskii, Nanosystems: Phys. Chem. Math. 1, 63 (2010)Google Scholar
  13. 13.
    O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga, V. Nicolosi, Ultramicroscopy 110, 935 (2010)CrossRefGoogle Scholar
  14. 14.
    E. Abou-Hamad, Yo. Kim, A.V. Talyzin, Ch. Goze-Bac, D.E. Luzzi, A. Rubio, T. Wagberg, J. Phys. Chem. C 113, 8583 (2009)CrossRefGoogle Scholar
  15. 15.
    V.A. Geyler, V.A. Margulis, M.A. Pyataev, J. Exper. Theor. Phys. 97, 763 (2003)CrossRefADSGoogle Scholar
  16. 16.
    D.A. Eremin, D.A. Ivanov, I.Yu. Popov, Physica E 44, 1598 (2012)CrossRefADSGoogle Scholar
  17. 17.
    M. Harmer, B. Pavlov, A. Yafyasov, J. Comp. Electron. 6, 153 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Michailova, B. Pavlov, I. Popov, T. Rudakova, A.M. Yafyasov, Math. Nachr. 235, 101 (2002)CrossRefMathSciNetGoogle Scholar
  19. 19.
    I.S. Lobanov, I.Yu. Popov, Nanosystems: Phys. Chem. Math. 3, 6 (2012)Google Scholar
  20. 20.
    E. Korotyaev, Commun. Math. Phys. 213, 471 (2000)CrossRefMATHMathSciNetADSGoogle Scholar
  21. 21.
    Ch. Grosche, F. Steiner, Handbook of Feynman Path Integrals (Springer-Verlag, Berlin, 1998)Google Scholar
  22. 22.
    J. Bruning, V.A. Geyler, V.A. Margulis, M.A. Pyataev, J. Phys. A 35, 4239 (2002)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    N. Bagraev, G. Martin, B.S. Pavlov, A. Yafyasov, Nanosystems: Phys. Chem. Math. 2, 20 (2011)Google Scholar
  24. 24.
    B.M. Levitan, I.S. Sargsyan, Introduction to Spectral Theory: Self-adjoint Ordinary Differential Operators. (Amer. Math. Soc., Providence, 1975)Google Scholar
  25. 25.
    M.S. Birman, M.Z. Solomyak, Spectral Theory of Self-adjoint Operators in Hilbert Space (D. Reidel Publishing, Dordrecht, 1987)Google Scholar
  26. 26.
    B.S. Pavlov, Russian Math. Surveys 42, 127 (1987)CrossRefMATHADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dmitry A. Eremin
    • 1
  • Dmitry A. Ivanov
    • 1
  • Igor Yu. Popov
    • 2
  1. 1.Mordovian State UniversitySaranskRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations