Advertisement

Heterogeneous delays in neural networks

  • Caglar Cakan
  • Judith LehnertEmail author
  • Eckehard Schöll
Regular Article

Abstract

We investigate heterogeneous coupling delays in complex networks of excitable elements described by the FitzHugh-Nagumo model. The effects of discrete as well as of uni- and bimodal continuous distributions are studied with a focus on different topologies, i.e., regular, small-world, and random networks. In the case of two discrete delay times resonance effects play a major role: depending on the ratio of the delay times, various characteristic spiking scenarios, such as coherent or asynchronous spiking, arise. For continuous delay distributions different dynamical patterns emerge depending on the width of the distribution. For small distribution widths, we find highly synchronized spiking, while for intermediate widths only spiking with low degree of synchrony persists, which is associated with traveling disruptions, partial amplitude death, or subnetwork synchronization, depending sensitively on the network topology. If the inhomogeneity of the coupling delays becomes too large, global amplitude death is induced.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization, A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001) Google Scholar
  2. 2.
    P. Roelfsema, A. Engel, P. König, W. Singer, Nature 385, 157 (1997) ADSCrossRefGoogle Scholar
  3. 3.
    K. Poeck, W. Hacke, Neurologie, 11th edn. (Springer, Heidelberg, 2001) Google Scholar
  4. 4.
    E. Rossoni, Y. Chen, M. Ding, J. Feng, Phys. Rev. E 71, 061904 (2005) ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    W. Singer, Scholarpedia 2, 1657 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    R. Vicente, L.L. Gollo, C.R. Mirasso, I. Fischer, P. Gordon, Proc. Natl. Acad. Sci. USA 105, 17157 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    C. Masoller, M.C. Torrent, J. García-Ojalvo, Phys. Rev. E 78, 041907 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    J. Lehnert, T. Dahms, P. Hövel, E. Schöll, Europhys. Lett. 96, 60013 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    I. Kanter, E. Kopelowitz, R. Vardi, M. Zigzag, W. Kinzel, M. Abeles, D. Cohen, Europhys. Lett. 93, 66001 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    T. Pérez, G.C. Garcia, V.M. Eguiluz, R. Vicente, G. Pipa, C. Mirasso, PLoS ONE 6, e19900 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    A. Keane, T. Dahms, J. Lehnert, S.A. Suryanarayana, P. Hövel, E. Schöll, Eur. Phys. J. B 85, 407 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80, 2109 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    J. Kestler, W. Kinzel, I. Kanter, Phys. Rev. E 76, 035202 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    F. Sorrentino, E. Ott, Phys. Rev. E 76, 056114 (2007) ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    T. Dahms, J. Lehnert, E. Schöll, Phys. Rev. E 86, 016202 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    C. Koch, Biophysics of Computation: Information Processing in Single Neurons (Oxford University Press, New York, 1999) Google Scholar
  17. 17.
    R. FitzHugh, Biophys. J. 1, 445 (1961) ADSCrossRefGoogle Scholar
  18. 18.
    J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962) CrossRefGoogle Scholar
  19. 19.
    B. Lindner, J. García-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    M. Heinrich, T. Dahms, V. Flunkert, S.W. Teitsworth, E. Schöll, New J. Phys. 12, 113030 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    J.D. Murray, Mathematical Biology, in Biomathematics Texts, 2nd edn. (Springer, Berlin, Heidelberg, 1993), Vol. 19 Google Scholar
  22. 22.
    E.M. Izhikevich, Int. J. Bifurc. Chaos 10, 1171 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  24. 24.
    R. Monasson, Eur. Phys. J. B 12, 555 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    M.E.J. Newman, D.J. Watts, Phys. Lett. A 263, 341 (1999) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    A. Rapoport, Bull. Math. Biol. 19, 257 (1957) MathSciNetGoogle Scholar
  27. 27.
    R. Solomonoff, A. Rapoport, Bull. Math. Biol. 13, 107 (1951) MathSciNetGoogle Scholar
  28. 28.
    P. Erdős, A. Rényi, Publ. Math. Debrecen 6, 290 (1959) MathSciNetGoogle Scholar
  29. 29.
    P. Erdős, A. Rényi, Publ. Math. Inst. Hung. Acad. Sci 5, 17 (1960) Google Scholar
  30. 30.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer-Verlag, Berlin, 1984) Google Scholar
  31. 31.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, C. Schäfer, P.A. Tass, Phase synchronization: from theory to data analysis, 1st edn. (Elsevier Science, Amsterdam, 2001), Vol. 4 of Handbook of Biological Physics, Chap. 9, pp. 279–321 Google Scholar
  32. 32.
    E. Schöll, G. Hiller, P. Hövel, M.A. Dahlem, Phil. Trans. R. Soc. A 367, 1079 (2009) ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    A. Panchuk, D.P. Rosin, P. Hövel, E. Schöll, Int. J. Bifurc. Chaos 23, 1330039 (2013) CrossRefGoogle Scholar
  34. 34.
    M. Zigzag, M. Butkovski, A. Englert, W. Kinzel, I. Kanter, Europhys. Lett. 85, 60005 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    D.V.R. Reddy, A. Sen, G.L. Johnston, Phys. Rev. Lett. 80, 5109 (1998) ADSCrossRefGoogle Scholar
  36. 36.
    F.M. Atay, Physica D 183, 1 (2003) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    C. Masoller, F.M. Atay, Eur. Phys. J. D 62, 119 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    F.M. Atay, Phys. Rev. Lett. 91, 094101 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    Y.N. Kyrychko, K.B. Blyuss, E. Schöll, Eur. Phys. J. B 84, 307 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    Y.N. Kyrychko, K.B. Blyuss, E. Schöll, Phil. Trans. R. Soc. A 371, 20120466 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Caglar Cakan
    • 1
  • Judith Lehnert
    • 1
    Email author
  • Eckehard Schöll
    • 1
  1. 1.Institut für Theoretische Physik, TU BerlinBerlinGermany

Personalised recommendations