Approach to equilibrium of a nondegenerate quantum system: decay of oscillations and detailed balance as separate effects of a reservoir

  • M. Tiwari
  • V. M. Kenkre
Regular Article


The approach to equilibrium of a nondegenerate quantum system involves the damping of microscopic population oscillations, and, additionally, the bringing about of detailed balance, i.e. the achievement of the correct Boltzmann factors relating the populations. These two are separate effects of interaction with a reservoir. One stems from the randomization of phases and the other from phase space considerations. Even the meaning of the word ‘phase’ differs drastically in the two instances in which it appears in the previous statement. In the first case it normally refers to quantum phases whereas in the second it describes the multiplicity of reservoir states that corresponds to each system state. The generalized master equation theory for the time evolution of such systems is here developed in a transparent manner and both effects of reservoir interactions are addressed in a unified fashion. The formalism is illustrated in simple cases including in the standard spin-boson situation wherein a quantum dimer is in interaction with a bath consisting of harmonic oscillators. The theory has been constructed for application in energy transfer in molecular aggregates and in photosynthetic reaction centers.


Statistical and Nonlinear Physics 


  1. 1.
    R.S. Knox, Excitation energy transfer and migration: Theoretical considerations in Bioenergetics of Photosynthesis (Academic Press, New York, 1975) Google Scholar
  2. 2.
    R.V. Grondelle, J. Amesz, Excitation energy transfer in photosynthetic systems in Light Emission by Plants and Bacteria (Academic Press, New York, 1986) Google Scholar
  3. 3.
    G. Govindjee, R. Govindjee, Sci. Am. 231, 68 (1974) Google Scholar
  4. 4.
    R.K. Clayton, J. Theor. Biol. 14, 173 (1967) CrossRefGoogle Scholar
  5. 5.
    R.K. Clayton, Photosynthesis Physical Mechanisms and Chemical Patterns, (Cambridge University Press, 1980) Google Scholar
  6. 6.
    E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer, G.D. Scholes, Nature 463, 644 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    A. Ishizaki, G.R. Fleming, Proc. Natl. Acad. Sci. 106, 17255 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    T. Förster, Ann. Phys. 437, 55 (1948) CrossRefGoogle Scholar
  9. 9.
    V.M. Kenkre, R.S. Knox, Phys. Rev. B 9, 5279 (1974) ADSCrossRefGoogle Scholar
  10. 10.
    M. Grover, R. Silbey, J. Chem. Phys. 54, 4843 (1971) ADSCrossRefGoogle Scholar
  11. 11.
    I.I. Abram, R. Silbey, J. Chem. Phys. 63, 2317 (1975) ADSCrossRefGoogle Scholar
  12. 12.
    S. Rackovsky, R. Silbey, Mol. Phys. 25, 61 (1973) ADSCrossRefGoogle Scholar
  13. 13.
    V.M. Kenkre, Phys. Rev. B 11, 1741 (1975) ADSCrossRefGoogle Scholar
  14. 14.
    V.M. Kenkre, Phys. Rev. B 12, 2150 (1975) ADSCrossRefGoogle Scholar
  15. 15.
    R. Zwanzig, Statistical Mechanics of Irreversibility in lectures in Theoretical Physics (Interscience Publisher New york, 1961), Vol. 3 Google Scholar
  16. 16.
    R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001) Google Scholar
  17. 17.
    V.M. Kenkre, in Stastical Mechanics and Statistical Methods in Theory and Application, edited by U. Landman (Plenum, New York, 1977), pp. 441–461 Google Scholar
  18. 18.
    V.M. Kenkre, T.S. Rahman, Phys. Lett. A 50, 170 (1974) ADSCrossRefGoogle Scholar
  19. 19.
    V.M. Kenkre, AIP Conf. Proc. 658, 63 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    M. Bonitz, D. Kremp, D.C. Scott, R. Binder, W.D. Kraeft, H.S. Köhler, J. Phys. Condens. Matter 8, 6057 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    D. Kremp, M. Bonitz, W.D. Kraeft, M. Schlanges, Ann. Phys. 258, 320 (1997) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    M. Moeckel, S. Kehrein, New J. Phys. 12, 055016 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    M. Kollar, F.A. Wolf, M. Eckstein, Phys. Rev. B 84, 054304 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    S. Genway, A.F. Ho, D.K.K. Lee, Phys. Rev. Lett. 111, 130408 (2013) ADSCrossRefGoogle Scholar
  25. 25.
    S. Goldstein, T. Hara, H. Tasaki, Phys. Rev. Lett. 111, 140401 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.D.A. Institute of Information and Communication Technology (DA-IICT)GandhinagarIndia
  2. 2.Consortium of the Americas for Interdisciplinary Science and Department of Physics and Astronomy, University of New MexicoAlbuquerqueUSA

Personalised recommendations