Advertisement

LMG model: Markovian evolution of classical and quantum correlations under decoherence

  • Nayereh MajdEmail author
  • Jahangir Payamara
  • Fariba Daliri
Regular Article
  • 188 Downloads

Abstract

We have investigated the quantum phase transition in the ground state of collective Lipkin-Meshkov-Glick model (LMG model) subjected to decoherence due to its interaction, represented by a quantum channel, with an environment. We discuss the behavior of quantum and classical pair wise correlations in the system, with the quantumness of correlations measured by quantum discord (QD), entanglement of formation (EOF), measurement-induced disturbance (MID) and the Clauser-Horne-Shimony-Holt-Bell function (CHSH-Bell function). The time evolution established by system-environment interactions is assumed to be Markovian in nature and the quantum channels studied include the amplitude damping (AD), phase damping (PD), bit-flip (BF), phase-flip (PF), and bit-phase-flip (BPF) channels. One can identify appropriate quantities associated with the dynamics of quantum correlations signifying quantum phase transition in the model. Surprisingly, the CHSH-Bell function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2001)Google Scholar
  2. 2.
    M.A. Continentino, Quantum Scaling in Many-Body Systems (World Scientific, Singapore, 2001)Google Scholar
  3. 3.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    L.A. Wu, M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 93, 250404 (2004)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    P. Smacchia et al., Phys. Rev. A 84, 022304 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    R. Orus, T.C. Wei, Phys. Rev. B 82, 155120 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    R. Eryigit, Y. Gunduc, R. Eryigit, Phys. Lett. A 358, 363 (2006)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    C.C. Rulli, M.S. Sarandy, Phys. Rev. A 81, 032334 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    L.A. Wu, M.S. Sarandy, D.A. Lidar, L.J. Sham, Phys. Rev. A 74, 052335 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    M.S. Sarandy, Phys. Rev. A 80, 022108 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    V.E. Korepin, Phys. Rev. Lett. 92, 096402 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    P. Calabrese, J. Cardy, J. Stat. Mech. 0406, 002 (2004)MathSciNetGoogle Scholar
  16. 16.
    M.B. Plenio, J. Eisert, J. Dreißig, M. Cramer, Phys. Rev. Lett. 94, 060503 (2005)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    M.M. Wolf, Phys. Rev. Lett. 96, 010404 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    R. Yu, H. Saleur, S. Haas, Phys. Rev. B 77, 140402 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M.M. Wolf, F. Verstraete, M.B. Hastings, J.I. Cirac, Phys. Rev. Lett. 100, 070502 (2008)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    H. Olivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    S. Luo, Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    E. Knill, R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    A. Acin, N. Gisin, L. Masanes, V. Scarani, Int. J. Quantum Inf. 2, 23 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    A. Acin, N. Gisin, L. Masanes, Phys. Rev. Lett. 97, 120405 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    I. Bose, E. Chattopadhyay, Phys. Rev. A 66, 062320 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    B.Q. Liu, B. Shao, J.G. Li, J. Zou, L.A. Wu, Phys. Rev. A 83, 052112 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    B. Tomasello, D. Rossini, A. Hamma, L. Amico, Europhys. Lett. 96, 27002 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    J. Maziero, H.C. Guzman, L.C. Celeri, M.S. Sarandy, R.M. Serra, Phys. Rev. A 82, 012106 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Phys. Rev. Lett. 105, 095702 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    T. Werlang, G.A.P.R. Ribeiro, G. Rigolin, Phys. Rev. A 83, 062334 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    R. Dillenschneider, Phys. Rev. B 78, 224413 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Y.C. Li, H.Q. Lin, Phys. Rev. A 83, 052323 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    C.C. Rulli, M.S. Sarandy, Phys. Rev. A 84, 042109 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    J. Maziero, L.C. Celeri, R.M. Serra, M.S. Sarandy, Phys. Lett. A 376, 1540 (2012)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    P. Zanardi, N. Paunkovic, Phys. Rev. E 74, 031123 (2006)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    W.W. Cheng, J.M. Liu, Phys. Rev. A 82, 012308 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    J. Batle, M. Casas, Phys. Rev. A 82, 062101 (2010)ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    L. Justino, T.R. de Oliveira, Phys. Rev. A 85, 052128 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    A.K. Pal, I. Bose, Eur. Phys. J. B 85, 36 (2012)ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    I. Bose, A.K. Pal, Int. J. Mod. Phys. B 27, 1345042 (2013)ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    A.K. Pal, I. Bose, Eur. Phys. J. B 85, 277 (2012)ADSCrossRefMathSciNetGoogle Scholar
  44. 44.
    F. Altintas, R. Eryigit, Ann. Phys. 327, 3084 (2012)ADSCrossRefzbMATHGoogle Scholar
  45. 45.
    A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, A. Acin, Phys. Rev. A 81, 052318 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    T.R. de Oliveira et al., Europhys. Lett. 100, 60004 (2012)CrossRefGoogle Scholar
  47. 47.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    T. Yu, J.H. Eberly, Quant. Inf. Comput. 7, 459 (2007)zbMATHMathSciNetGoogle Scholar
  49. 49.
    R.F. Werner, Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
  50. 50.
    W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    C.Z. Wang, C.X. Li, L.Y. Nie, J.F. Li, J. Phys. B 44, 015503 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    G.F. Zhang, Y.C. Hou, A.L. Ji, Solid State Commun. 151, 790 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  55. 55.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 200, 340 (1995)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    L. Derkaz, L. Jackdoczyk, Phys. Rev. A 72, 042321 (2005)ADSCrossRefMathSciNetGoogle Scholar
  57. 57.
    L. Mazzola, B. Bellomo, R.L. Franco, G. Compagno, Phys. Rev. A 81, 052116 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  59. 59.
    J. Maziero, T. Werlang, F.F. Fanchini, L.C. Céleri, R.M. Serra, Phys. Rev. A 81, 022116 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    T. Werlang, S. Souza, F.F. Fanchini, C. Villas Boas, Phys. Rev. A 80, 024103 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965)CrossRefMathSciNetGoogle Scholar
  62. 62.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980)Google Scholar
  63. 63.
    P. Ribeiro, J. Vidal, R. Mosseri, Phys. Rev. E 78, 021106 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    P. Ribeiro, J. Vidal, R. Mosseri, Phys. Rev. Lett. 99, 050402 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    R. Orus, S. Dusuel, J. Vidal, Phys. Rev. Lett. 101, 025701 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    J. Vidal, G. Palacious, R. Mosseri, Phys. Rev. A 69, 022107 (2004)ADSCrossRefGoogle Scholar
  67. 67.
    S. Dusuel, J. Vidal, Phys. Rev. B 71, 224420 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Phys. Rev. A 80, 044102 (2009)ADSCrossRefMathSciNetGoogle Scholar
  69. 69.
    L. Mazzola, J. Piilo, S. Maniscalco, Phys. Rev. Lett. 104, 200401 (2010)ADSCrossRefMathSciNetGoogle Scholar
  70. 70.
    J.S. Xu, X.Y. Xu, C.F. Li, C.J. Zhong, X.B. Zoa, G.C. Guo, Nat. Commun. 1, 7 (2010)ADSGoogle Scholar
  71. 71.
    R. Auccaise et al., Phys. Rev. Lett. 107, 140403 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nayereh Majd
    • 1
    Email author
  • Jahangir Payamara
    • 2
  • Fariba Daliri
    • 2
  1. 1.Department of Engineering ScienceUniversity of TehranTehranIslamic Republic of Iran
  2. 2.Department of PhysicsShahed UniversityTehranIslamic Republic of Iran

Personalised recommendations