Advertisement

Pressure-induced superconductivity and structural transitions in Ba(Fe0.9Ru0.1)2As2

  • Walter O. Uhoya
  • Georgiy M. Tsoi
  • Yogesh K. Vohra
  • Athena S. Sefat
  • Samuel T. Weir
Regular Article
  • 151 Downloads

Abstract

Electrical transport and structural characterizations of isoelectronically substituted Ba(Fe0.9Ru0.1)2As2 have been performed as a function of pressure up to ∼ 30 GPa and temperature down to ∼ 10 K using designer diamond anvil cell. Similar to undoped members of the AFe2As2 (A = Ca, Sr, Ba) family, Ba(Fe0.9Ru0.1)2As2 shows anomalous a-lattice parameter expansion with increasing pressure and a concurrent ThCr2Si2 type isostructural (I4/mmm) phase transition from tetragonal (T) phase to a collapsed tetragonal (cT) phase occurring between 12 and 17 GPa where the a is maximum. Above 17 GPa, the material remains in the cT phase up to 30 GPa at 200 K. The resistance measurements show evidence of pressure-induced zero resistance that may be indicative of high-temperature superconductivity for pressures above 3.9 GPa. The onset of the resistive transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above ∼ 10.6 GPa near the T-cT transition. We have determined the crystal structure of the high-T c phase of Ru-doped BaFe2As2 to remain as tetragonal (I4/mmm) by analyzing the X-ray diffraction pattern obtained at 10 K and 9.7 ± 0.7 GPa, as opposed to inferring the structural transition from electrical resistance measurement, as in a previous report [S.K. Kim, M.S. Torikachvili, E. Colombier, A. Thaler, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 84, 134525 (2011)].

Keywords

Solid State and Materials 

References

  1. 1.
    S.K. Kim, M.S. Torikachvili, E. Colombier, A. Thaler, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 84, 134525 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  3. 3.
    H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, Nature 453, 376 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    B. Lv, L. Denga, M. Goocha, F. Weia, Y. Suna, J.K. Meena, Y.-Y. Xuea, B. Lorenza, C.-W. Chu, Proc. Natl. Acad. Sci. 108, 15705 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    A.S. Sefat, R. Jin, M.A. McGuire, B.C. Sales, D. Mandrus, F. Ronning, E.D. Bauer, Y. Mozharivskyj, Phys. Rev. B 79, 094508 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    A.S. Sefat, D.J. Singh, Mater. Res. Bull. 36, 614 (2011)CrossRefGoogle Scholar
  7. 7.
    G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    A.S. Sefat, K. Marty, A.D. Christianson, B. Saparov, M.A. McGuire, M.D. Lumsden, W. Tian, B. Sales, Phys. Rev. B 85, 24503 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    A. Leithe-Jasper, W. Schnelle, C. Geibel, H. Rosner, Phys. Rev. Lett.101, 207004 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    K. Sasmal, B. Lv, B. Lorenz, A.M. Guloy, F. Chen, Y.Y. Xue, C.W. Chu, Phys. Rev. Lett. 101, 107007 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    A.S. Sefat, Rep. Prog. Phys. 74, 124502 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M.J. Eom, S. Na, C. Hoch, R. Kremer, J. Kim, Phys. Rev. B 85, 024536 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M.G. Kim, D.K. Pratt, G.E. Rustan, W. Tian, J.L. Zarestky, A. Thaler, S.L. Bud’ko, P.C. Canfield, R.J. McQueeney, A. Kreyssig, A.I. Goldman, Phys. Rev. B 83, 054514 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A. Thaler, N. Ni, A. Kracher, J.Q. Yan, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 82, 014534 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M.S. Torikachvili, S.L. Bud’ko, N. Ni, P.C. Canfield, Phys. Rev. Lett. 101, 057006 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    A. Kreyssig, M.A. Green, Y. Lee, G.D. Samolyuk, P. Zajdel, J.W. Lynn, S.L. Bud’ko, M.S. Torikachvili, N. Ni, S. Nandi, J.B. Leão, S.J. Poulton, D.N. Argyriou, B.N. Harmon, R.J. McQueeney, P.C. Canfield, A.I. Goldman, Phys. Rev. B 78, 184517 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    A.I. Goldman, A. Kreyssig, K. Prokeš, D.K. Pratt, D.N. Argyriou, J.W. Lynn, S. Nandi, S.A.J. Kimber, Y. Chen, Y.B. Lee, G. Samolyuk, J.B. Leão, S.J. Poulton, S.L. Bud’ko, N. Ni, P.C. Canfield, B.N. Harmon, R.J. McQueeney, Phys. Rev. B 79, 024513 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    W. Uhoya, A. Stemshorn, G. Tsoi, Y.K. Vohra, A.S. Sefat, B.C. Sales, K.M. Hope, S.T. Weir, Phys. Rev. B 82, 144118 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    W.O. Uhoya, J.M. Montgomery, G.M. Tsoi, Y.K. Vohra, M.A. McGuire, A.S. Sefat, B.C. Sales, S.T. Weir, J. Phys.: Condens. Matter 23, 122201 (2011)ADSGoogle Scholar
  20. 20.
    D. Kasinathan, M. Schmitt, K. Koepernik, A. Ormeci, K. Meier, U. Schwarz, M. Hanfland, C. Geibel, Y. Grin, A. Leithe-Jasper, H. Rosner, Phys. Rev. B 84, 054509 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    G.M. Tsoi, W. Malone, W. Uhoya, J.E. Mitchell, Y.K. Vohra, L.E. Wenger, A.S. Sefat, S.T. Weir, J. Phys.: Condens. Matter 24, 495702 (2012)Google Scholar
  22. 22.
    W. Uhoya, G. Tsoi, Y.K. Vohra, M.A. McGuire, A.S. Sefat, B.C. Sales, D. Mandrus, S.T. Weir, J. Phys.: Condens. Matter 22, 292202 (2010)Google Scholar
  23. 23.
    P.C. Canfield, S.L. Bud’ko, N. Ni, A. Kreyssig, A.I. Goldman, R.J. McQueeney, M.S. Torikachvili, D.N. Argyriou, G. Luke, W. Yu, Physica C 469, 404 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    K. Prokeš, A. Kreyssig, B. Ouladdiaf, D.K. Pratt, N. Ni, S.L. Bud’ko, P.C. Canfield, R.J. McQueeney, D.N. Argyriou, A.I. Goldman, Phys. Rev. B 81, 180506 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    W. Yu, A.A. Aczel, T.J. Williams, S.L. Bud’ko, N. Ni, P.C. Canfield, G.M. Luke, Phys. Rev. B 79, 02051 (2009)Google Scholar
  26. 26.
    S.R. Saha, N.P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P.Y. Zavalij, J.W. Lynn, J. Paglione, Phys. Rev. B 85, 024525 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S.T. Weir, J. Akella, C.A. Ruddle, Y.K. Vohra, S.A. Catledge, Appl. Phys. Lett. 77, 3400 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    G. Tsoi, A.K. Stemshorn, Y.K. Vohra, P.M. Wu, F.C. Hsu, Y.L. Huang, M.K. Wu, K.W. Yeh, S.T. Weir, J. Phys.: Condens. Matter 21, 232201 (2009)ADSGoogle Scholar
  29. 29.
    J. Yen, M. Nicol, J. Appl. Phys. 72, 5535 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    A.P. Hammersley, Report No. EXP/AH/95-01 (1995)Google Scholar
  31. 31.
    A.C. Larson, R.B. Von Dreele, Los Alamos National Laboratory Report LAUR, 86-748 (2004)Google Scholar
  32. 32.
    B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001)CrossRefGoogle Scholar
  33. 33.
    W.J. Duncan et al., J. Phys.: Condens. Matter 22, 052201 (2010)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Walter O. Uhoya
    • 1
  • Georgiy M. Tsoi
    • 1
  • Yogesh K. Vohra
    • 1
  • Athena S. Sefat
    • 2
  • Samuel T. Weir
    • 3
  1. 1.Department of PhysicsUniversity of Alabama at Birmingham (UAB)BirminghamUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National Laboratory (ORNL)Oak RidgeUSA
  3. 3.Mail Stop L-041Lawrence Livermore National Laboratory (LLNL)LivermoreUSA

Personalised recommendations