Periodic frequencies of the cycles in 2 × 2 games: evidence from experimental economics

Regular Article

Abstract

Evolutionary dynamics provides an iconic relationship – the periodic frequency of a game is determined by the payoff matrix of the game. This paper reports the first experimental evidence to demonstrate this relationship. Evidence comes from two populations randomly-matched 2 × 2 games with 12 different payoff matrix parameters. The directions, frequencies and changes in the radius of the cycles are measured definitively. The main finding is that the observed periodic frequencies of the persistent cycles are significantly different in games with different parameters. Two replicator dynamics, standard and adjusted, are employed as predictors for the periodic frequency. Interestingly, both of the models could infer the difference of the observed frequencies well. The experimental frequencies linearly, positively and significantly relate to the theoretical frequencies, but the adjusted model performs slightly better.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944)Google Scholar
  2. 2.
    J. Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982)Google Scholar
  3. 3.
    B. Andrae et al., Phys. Rev. Lett. 104, 218102 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    R. Myerson, Game Theory: Analysis of Conflict (Harvard University Press, Cambridge, 1997)Google Scholar
  5. 5.
    R. Dawkins, The Selfish Gene (Oxford University Press, Oxford, 1976)Google Scholar
  6. 6.
    P. Schuster, K. Sigmund, Animal Behaviour 29, 186 (1981)CrossRefGoogle Scholar
  7. 7.
    J. Cremer, T. Reichenbach, E. Frey, Eur. Phys. J. B 63, 373 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    J.C. Claussen, Eur. Phys. J. B 60, 391 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    P. Taylor, L. Jonker, Mathematical Biosciences 40, 145 (1978)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    J. Weibull, Evolutionary Game Theory (The MIT press, Cambridge, 1997)Google Scholar
  11. 11.
    J. Hofbauer, K. Sigmund, Bull. Am. Math. Soc. 40, 479 (2003)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    W. Sandholm, Population Games And Evolutionary Dynamics (MIT press, Cambridge, 2011)Google Scholar
  13. 13.
    A. Falk, J. Heckman, Science 326, 535 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    L. Samuelson, J. Econ. Perspectives 16, 47 (2002)CrossRefGoogle Scholar
  15. 15.
    K. Binmore, J. Swierzbinski, C. Proulx, Econ. J. 111, 445 (2001)CrossRefGoogle Scholar
  16. 16.
    D. Friedman, Econ. J. 106, 1 (1996)CrossRefGoogle Scholar
  17. 17.
    C. Anderson et al., J. Econ. Theory 115, 209 (2004)CrossRefMATHGoogle Scholar
  18. 18.
    T.N. Cason, D. Friedman, E. Hopkins, Rev. Econ. Stud. 81, 112 (2014)CrossRefGoogle Scholar
  19. 19.
    B. Xu, H.-J. Zhou, Z. Wang, Physica A 392, 4997 (2013)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. Selten, T. Chmura, Am. Econ. Rev. 98, 938 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Traulsen, J. Claussen, C. Hauert, Phys. Rev. Lett. 95, 238701 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    M. Hoffman, S. Suetens, M. Nowak, U. Gneezy, unpublished (2012)Google Scholar
  23. 23.
    T. Borgers, R. Sarin, J. Econ. Theory 77, 1 (1997)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Y. Cheung, D. Friedman, J. Econ. Behav. Organ. 35, 263 (1998)CrossRefGoogle Scholar
  25. 25.
    B. Xu, Z. Wang, in Unifying Themes in Complex Systems, edited by H. Sayama et al. (NECSI Knowledge Press, 2011), Vol. VIII, p. 1313Google Scholar
  26. 26.
    H.P. Young, Stochastic Adaptive Dynamics (Palgrave Macmillan, Basingstoke, 2008)Google Scholar
  27. 27.
    S. Dorosz, M. Pleimling, Phys. Rev. E 83, 031107 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    B. Xu, Z. Wang, SSRN eLibrary, Social Transition Spectrum in Constant Sum 2 × 2 Games with Human Subjects (2011), http://dx.doi.org/10.2139/ssrn.1910045
  29. 29.
    C. Castellano, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    C. Alós-Ferrer, Int. Game Theory Rev. 5, 263 (2003)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    C. Camerer, R.S. Foundation, Behavioral Game Theory: Experiments in Strategic Interaction (Princeton University Press, Princeton, 2003), Vol. 9Google Scholar
  33. 33.
    I. Erev et al., J. Behav. Decis. Mak. 23, 15 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Benaīm, J. Hofbauer, E. Hopkins, J. Econ. Theory 144, 1694 (2009)CrossRefMATHGoogle Scholar
  35. 35.
    Z. Wang, B. Xu, arXiv:1203.2591 (2012)Google Scholar
  36. 36.
    K. Ritzberger, J. Weibull, Econometrica 63, 1371 (1995)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    B. Xu, Z. Wang, Results Phys. 2, 127 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    J. Hofbauer, J. Math. Biol. 34, 675 (1996)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    A. Traulsen, C. Hauert, Rev. Nonlinear Dyn. Complexity 2, 25 (2009)Google Scholar
  40. 40.
    S. Bowles, Microeconomics: Behavior, Institutions, and Evolution (Princeton University Press, Princeton, 2004)Google Scholar
  41. 41.
    K. Sigmund, The Calculus of Selfishness (Princeton University Press, Princeton, 2010)Google Scholar
  42. 42.
    S. Holzner, Physics I for Dummies (Wiley Publishing Inc., Hoboken, 2011)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Experimental Social Science LaboratoryZhejiang UniversityHangzhouP.R. China
  2. 2.Public Administration CollegeZhejiang Gongshang UniversityHangzhouP.R. China
  3. 3.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China
  4. 4.Chu Kochen CollegeZhejiang UniversityHangzhouP.R. China
  5. 5.Department of EconomicsDuke UniversityDurhamUSA

Personalised recommendations