Order-by-disorder in classical oscillator systems

  • Florin Ionita
  • Darka Labavić
  • Michael A. Zaks
  • Hildegard Meyer-OrtmannsEmail author
Regular Article


We consider classical nonlinear oscillators on hexagonal lattices. When the coupling between the elements is repulsive, we observe coexisting states, each one with its own basin of attraction. These states differ by their degree of synchronization and by patterns of phase-locked motion. When disorder is introduced into the system by additive or multiplicative Gaussian noise, we observe a non-monotonic dependence of the degree of order in the system as a function of the noise intensity: intervals of noise intensity with low synchronization between the oscillators alternate with intervals where more oscillators are synchronized. In the latter case, noise induces a higher degree of order in the sense of a larger number of nearly coinciding phases. This order-by-disorder effect is reminiscent to the analogous phenomenon known from spin systems. Surprisingly, this non-monotonic evolution of the degree of order is found not only for a single interval of intermediate noise strength, but repeatedly as a function of increasing noise intensity. We observe noise-driven migration of oscillator phases in a rough potential landscape.


Statistical and Nonlinear Physics 


  1. 1.
    J. Villain, R. Bidaux, J.P. Carton, R. Conte, J. Phys. (France) 41, 1263 (1980) CrossRefMathSciNetGoogle Scholar
  2. 2.
    D. Bergman, J. Alicea, E. Gull, S. Trebst, L. Balents, Nat. Phys. 3, 487 (2007)CrossRefGoogle Scholar
  3. 3.
    R. Barnett, S. Powell, T. Graß, M. Lewenstein, S. Das Sharma, Phys. Rev. A 85, 023615 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    J.N. Reimers, A.J. Berlinsky, Phys. Rev. B 48, 9539 (1993) ADSCrossRefGoogle Scholar
  5. 5.
    A. Chubukov, Phys. Rev. Lett. 69, 832 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    R. Moessner, J.T. Chalker, Phys. Rev. B 58, 12049 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    C.L. Henley, Phys. Rev. Lett. 62, 2056 (1989) ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Turner, R. Barnett, E. Demler, A. Vishwanath, Phys. Rev. Lett. 98, 190404 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    H. Sakaguchi, S. Shinomoto, Y. Kuramoto, Prog. Theor. Phys. 79, 600 (1988)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    C.J. Tessone, D.H. Zanette, R. Toral, Eur. Phys. J. B 62, 319 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    D.H. Zanette, Europhys. Lett. 72, 190 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    H. Hong, S.H. Strogatz, Phys. Rev. E 84, 046202 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    H. Daido, Phys. Rev. Lett. 68, 1073 (1992) ADSCrossRefGoogle Scholar
  14. 14.
    P. Kaluza, H. Meyer-Ortmanns, Chaos 20, 043111 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    H. Hong, H. Park, M.Y. Choi, Phys. Rev. E 72, 036217 (2005) ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    B. Lindner, J. Garcia Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    R. Toral, C.R. Mirasso, J.D. Gunton, Europhys. Lett. 61, 162 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Florin Ionita
    • 1
  • Darka Labavić
    • 1
  • Michael A. Zaks
    • 2
  • Hildegard Meyer-Ortmanns
    • 1
    Email author
  1. 1.School of Engineering and ScienceJacobs University BremenBremenGermany
  2. 2.Institut für MathematikHumboldt University BerlinBerlinGermany

Personalised recommendations