Advertisement

Cumulants of heat transfer across nonlinear quantum systems

  • Huanan LiEmail author
  • Bijay Kumar Agarwalla
  • Baowen Li
  • Jian-Sheng Wang
Regular Article

Abstract

We consider thermal conduction across a general nonlinear phononic junction. Based on two-time observation protocol and the nonequilibrium Green’s function method, heat transfer in steady-state regimes is studied, and practical formulas for the calculation of the cumulant generating function are obtained. As an application, the general formalism is used to study anharmonic effects on fluctuation of steady-state heat transfer across a single-site junction with a quartic nonlinear on-site pinning potential. An explicit nonlinear modification to the cumulant generating function exact up to the first order is given, in which the Gallavotti-Cohen fluctuation symmetry is found still valid. Numerically a self-consistent procedure is introduced, which works well for strong nonlinearity.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    Y.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 16665 (2009) CrossRefMathSciNetGoogle Scholar
  3. 3.
    L.S. Levitov, G.B. Lesovik, J. Exp. Theor. Phys. Lett. 58, 230 (1993) Google Scholar
  4. 4.
    K. Saito, A. Dhar, Phys. Rev. Lett. 99, 180601 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    K. Saito, A. Dhar, Phys. Rev. Lett. 101, 049902(E) (2008) ADSCrossRefGoogle Scholar
  6. 6.
    K. Schönhammer, Phys. Rev. B 75, 205329 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    J.-S. Wang, B.K. Agarwalla, H. Li, Phys. Rev. B 84, 153412 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    B.K. Agarwalla, B. Li, J.-S. Wang, Phys. Rev. E 85, 051142 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    S. Liu, B.K. Agarwalla, J.-S. Wang, B. Li, Phys. Rev. E 87, 022122 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    R. Avriller, A. Levy Yeyati, Phys. Rev. B 80, 041309 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    L.-A. Wu, D. Segal, Phys. Rev. Lett. 102, 095503 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    J. Ren, P. Hänggi, B. Li, Phys. Rev. Lett. 104, 170601 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    J. Ren, S. Liu, B. Li, Phys. Rev. Lett. 108, 210603 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. E 83, 041114 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    H. Li, B.K. Agarwalla, J.-S. Wang, Phys. Rev. B 86, 165425 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    A.O. Gogolin, A. Komnik, Phys. Rev. B 73, 195301 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    R.P. Feynman, Phys. Rev. 56, 340 (1939) ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    J. Rammer, Quantum Field Theory of Nonequilibrium States (Cambridge University Press, Cambridge, 2007) Google Scholar
  22. 22.
    Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992) ADSCrossRefGoogle Scholar
  23. 23.
    H. Kleinert, A. Pelster, B. Kastening, M. Bachmann, Phys. Rev. E 62, 1537 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    A. Pelster, K. Glaum, Physica A 335, 455 (2004) ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    J.-S. Wang, J. Wang, J.T. Lü, Eur. Phys. J. B 62, 381 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    T.-H. Park, M. Galperin, Phys. Rev. B 84, 205450 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    D. He, J. Thingna, private communication Google Scholar
  29. 29.
    J. Thingna, J.L. García-Palacios, J.-S. Wang, Phys. Rev. B 85, 195452 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    J.-S. Wang, B.K. Agarwalla, H. Li, J. Thingna, arXiv:1303.7317 (2013) Google Scholar
  31. 31.
    L. Zhang, J. Thingna, D. He, J.-S. Wang, B. Li, Europhys. Lett. 103, 64002 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    M. Gaudin, Nucl. Phys. 15, 89 (1960) CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    J.-P. Blaizot, G. Ripka, Quantum Theory of Finite Systems(MIT Press, Massachusetts, 1986) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Huanan Li
    • 1
    Email author
  • Bijay Kumar Agarwalla
    • 1
    • 2
  • Baowen Li
    • 1
    • 3
    • 4
  • Jian-Sheng Wang
    • 1
  1. 1.Department of Physics and Center for Computational Science and EngineeringNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.Chemistry Department, University of CaliforniaIrvineUSA
  3. 3.NUS Graduate School for Integrative Sciences and EngineeringSingaporeRepublic of Singapore
  4. 4.Center for Phononics and Thermal Energy Science, School of Physical Science and Engineering, Tongji UniversityShanghaiP.R. China

Personalised recommendations