Influence of topology in the evolution of coordination in complex networks under information diffusion constraints

  • Dharshana Kasthurirathna
  • Mahendra Piraveenan
  • Michael Harré
Regular Article


In this paper, we study the influence of the topological structure of social systems on the evolution of coordination in them. We simulate a coordination game (“Stag-hunt”) on four well-known classes of complex networks commonly used to model social systems, namely scale-free, small-world, random and hierarchical-modular, as well as on the well-mixed model. Our particular focus is on understanding the impact of information diffusion on coordination, and how this impact varies according to the topology of the social system. We demonstrate that while time-lags and noise in the information about relative payoffs affect the emergence of coordination in all social systems, some topologies are markedly more resilient than others to these effects. We also show that, while non-coordination may be a better strategy in a society where people do not have information about the payoffs of others, coordination will quickly emerge as the better strategy when people get this information about others, even with noise and time lags. Societies with the so-called small-world structure are most conducive to the emergence of coordination, despite limitations in information propagation, while societies with scale-free topologies are most sensitive to noise and time-lags in information diffusion. Surprisingly, in all topologies, it is not the highest connected people (hubs), but the slightly less connected people (provincial hubs) who first adopt coordination. Our findings confirm that the evolution of coordination in social systems depends heavily on the underlying social network structure.


Statistical and Nonlinear Physics 


  1. 1.
    R. Axelrod, D.E. Axelrod, K.J. Pienta, Proc. Natl. Acad. Sci. 103, 13474 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    J. Maynard Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982)Google Scholar
  3. 3.
    W.H. Riker, Toward a history of game theory (Duke University Press, 1992), Vol. 24, p. 207Google Scholar
  4. 4.
    W. Yoshida, R.J. Dolan, K.J. Friston, PLoS Comput. Biol. 4, e1000254 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Von Neumann, O. Morgenstern, Game Theory and Economic Behavior (Wiley, New York, 1944)Google Scholar
  6. 6.
    J.F. Nash et al., Proc. Natl. Acad. Sci. 36, 48 (1950)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    J Maynard Smith, J. Theor. Biol. 47, 209 (1974)CrossRefMathSciNetGoogle Scholar
  8. 8.
    J.M. Pacheco, F.C. Santos, M.O. Souza, B. Skyrms, Proc. Roy. Soc. B 276, 315 (2009)CrossRefGoogle Scholar
  9. 9.
    M.A. Nowak, R.M. May, Nature 359, 826 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Nowak, S. Bonhoeffer, R.M. May, Proc. Natl. Acad. Sci. 91, 4877 (1994)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    X. Chen, L. Wang, Phys. Rev. E 77, 017103 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Rong, X. Li, X. Wang, Phys. Rev. E 76, 027101 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    R.T. Paine, The American Naturalist 100, 65 (1966)CrossRefGoogle Scholar
  14. 14.
    B. Skyrms, R. Pemantle, Proc. Natl. Acad. Sci. 97, 9340 (2000)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    J. Park, M.E.J. Newman, Phys. Rev. E 70, 066117 (2004)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, Oxford, 2003)Google Scholar
  18. 18.
    Biological Networks, edited by F. Kepes (World Scientific, Singapore, 2007)Google Scholar
  19. 19.
    H. Ohtsuki, C. Hauert, E. Lieberman, M.A. Nowak, Nature 441, 502 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    P. Erdős, A. Rényi, Publicationes Mathematicae Debrecen 6, 290 (1959)MathSciNetGoogle Scholar
  21. 21.
    A. Traulsen, J.C. Claussen, C. Hauert, Phys. Rev. E 74, 011901 (2006)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    M.S. Harré, S.R. Atkinson, L. Hossain, Eur. Phys. J. B 86, 1 (2013)CrossRefMathSciNetGoogle Scholar
  23. 23.
    D.H. Wolpert, M. Harré, E. Olbrich, N. Bertschinger, J. Jost, Phys. Rev. E 85, 036102 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    M.S. Harré, J. Phys.: Conf. Ser. 410, 012045 (2013)ADSGoogle Scholar
  25. 25.
    D. Wolpert, J. Jamison, D. Newth, M. Harre, BE J. Theor. Econ. 11, 1 (2011)MathSciNetGoogle Scholar
  26. 26.
    B. Skyrms, Proc. Addresses Am. Philos. Assoc. 75, 31 (2001)CrossRefGoogle Scholar
  27. 27.
    R. Boyd, P.J. Richerson, Culture and the evolution of the human social instincts, Roots of human sociality (Berg Publishers, Oxford, 2006), pp. 453–477Google Scholar
  28. 28.
    A.-L. Barabási, Science 325, 412 (2009)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    A.-L. Barabási, R. Albert, H. Jeong, Physica A 281, 69 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    A.-L. Barabási, E. Bonabeau, Sci. Am. 288, 50 (2003)CrossRefGoogle Scholar
  31. 31.
    A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, M. Viale, Proc. Natl. Acad. Sci. 107, 11865 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Mitchell, Artificial Intelligence 170, 1194 (2006)CrossRefMathSciNetGoogle Scholar
  33. 33.
    M. Piraveenan, M. Prokopenko, A.Y. Zomaya, Eur. Phys. J. B 67, 291 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    M. Piraveenan, M. Prokopenko, A.Y. Zomaya, Eur. Phys. J. B 70, 275 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    F.C. Santos, J.F. Rodrigues, J.M. Pacheco, Proc. Roy. Soc. B 273, 51 (2006)CrossRefGoogle Scholar
  36. 36.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    M.E.J. Newman, J. Stat. Phys. 101, 819 (2000)CrossRefzbMATHGoogle Scholar
  39. 39.
    S. Milgram, Psychol. Today 1, 61 (1967)Google Scholar
  40. 40.
    D.J. Watts, Six Degrees: The Science of a Connected Age (Norton, New York, 2003)Google Scholar
  41. 41.
    M. Rubinov, S.A. Knock, C.J. Stam, S. Micheloyannis, A.W.F. Harris, L.M. Williams, M. Breakspear, Hum. Brain Map. 30, 403 (2009)CrossRefGoogle Scholar
  42. 42.
    U. Alon, Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall, London, 2007)Google Scholar
  43. 43.
    S.-J. Wang, C. Zhou, New J. Phys. 14, 023005 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    K. Hölttä, E.S. Suh, O. de Weck, in International Conference on Engineering Design (ICED05), edited by A. Samuel, W. Lewis (The Design Society, Melbourne, 2005), p. DS3560.1Google Scholar
  45. 45.
    D. Kasthurirathna, A. Dong, M. Piraveenan, I.Y. Tumer, in Proceedings of the 2013 ASME International Design Engineering Technical Conferences, Portland, 2013 Google Scholar
  46. 46.
    Y.-Y. Ahn, J. Bagrow, S. Lehmann, arXiv:0903.3178 (2009)Google Scholar
  47. 47.
    D. Walker, S. Reay Atkinson, L. Hossain, in SOTICS 2012, The Second International Conference on Social Eco-Informatics, Venice, 2012, pp. 7–12Google Scholar
  48. 48.
    R. Albert, A.-L. Barabási, Science 286, 509 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    S. Sarkar, A. Dong, in ASME 2011 International Design Engineering Technical Conference and Computers and Information in Engineering Conference (IDETC/ CIE2011) (ASME, New York, 2011), Vol. 9, pp. 375–384Google Scholar
  50. 50.
    R.V. Solé, S. Valverde, in Complex Networks, Lecture Notes in Physics, edited by E. Ben-Naim, H. Frauenfelder, Z. Toroczkai (Springer, 2004), Vol. 650, pp. 189–207Google Scholar
  51. 51.
    M. Piraveenan, M. Prokopenko, A. Zomaya, Networks and Heterogeneous Media 3, 441 (2012)CrossRefMathSciNetGoogle Scholar
  52. 52.
    N. Masuda, K. Aihara, Phys. Lett. A 313, 55 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    E. Ahmed, A. Elgazzar, Eur. Phys. J. B 18, 159 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    L.-L. Jiang, M. Perc, Sci. Rep. 3, 2483 (2013)ADSGoogle Scholar
  55. 55.
    M. Piraveenan, M. Prokopenko, L. Hossain, PloS one 8, e53095 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    M. Piraveenan, M. Prokopenko, A.Y. Zomaya, IEEE/ACM Trans. Comput. Biol. Bioinf. 9, 66 (2012)CrossRefGoogle Scholar
  57. 57.
    M. Piraveenan, M. Prokopenko, A.Y. Zomaya, Europhys. Lett. 84, 28002 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dharshana Kasthurirathna
    • 1
  • Mahendra Piraveenan
    • 1
  • Michael Harré
    • 1
  1. 1.Centre for Complex Systems Research, Faculty of Engineering and ITThe University of SydneySydneyAustralia

Personalised recommendations