Advertisement

Ferrimagnetic nanoparticles for self-controlled magnetic hyperthermia

  • A.T. Apostolov
  • I.N. Apostolova
  • J.M. WesselinowaEmail author
Regular Article

Abstract

Based on the Heisenberg model including single-site uniaxial anisotropy and using a Green’s function technique we studied the influence of size and composition effects on the Curie temperature T C , saturation magnetization M S and coercivity H C of spherical nanoparticles with a structural formula M e 1−x Zn x Fe2O4, Me = Ni, Cu, Co, Mn. It is shown that for x = 0.4–0.5 and d = 10–20 nm these nanoparticles have a T C  = 315 K and are suitable for a self-controlled magnetic hyperthermia.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D 36, R167 (2003)CrossRefADSGoogle Scholar
  2. 2.
    K. Parekh, R.V. Upadhyay, R.V. Mehta, D. Srinivas, J. Appl. Phys. 88, 2799 (2000)CrossRefADSGoogle Scholar
  3. 3.
    R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, Physica B 363, 225 (2005)CrossRefADSGoogle Scholar
  4. 4.
    R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, J. Magn. Magn. Mater. 298, 83 (2006)CrossRefADSGoogle Scholar
  5. 5.
    S.A. Mazen, S.F. Mansour, H.M. Zaki, Cryst. Res. Technol. 38, 471 (2003)CrossRefGoogle Scholar
  6. 6.
    G.V. Duong, R. Sato Turtelli, W.C. Nunes, E. Schafler, N. Hanh, R. Groessinger, M. Knobel, J. Non-Cryst. Solids 353, 805 (2007)CrossRefADSGoogle Scholar
  7. 7.
    G.V. Duong, R. Sato Turtelli, N. Hanh, D.V. Linh, M. Reissner, H. Michor, J. Fidler, G. Wiesinger, R. Groessinger, J. Magn. Magn. Mater. 307, 313 (2006)CrossRefADSGoogle Scholar
  8. 8.
    A. Franco Jr., F.C. de Silva, J. Appl. Phys. 113, 17B513 (2013)CrossRefGoogle Scholar
  9. 9.
    E. Girgis, M.M.S. Wahsh, A.G.M. Othman, L. Bandhu, K.V. Rao, Nanosc. Res. Lett. 6, 460 (2011)CrossRefADSGoogle Scholar
  10. 10.
    S. Singhal, T. Namgyal, S. Bansal, K. Chandra, J. Electromagn. Anal. Appl. 2, 376 (2010)Google Scholar
  11. 11.
    G. Kozlowski, Magnetic Nanoparticles in Hyperthermia Treatment, Wright State University, CORE Scholar, Special Session 5: Carbon and Oxide Based Nanostructured Materials (2012)Google Scholar
  12. 12.
    M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, J. Alloys Compd. 486, 325 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Singh, M. Singh, N.K. Ralhan, R.K. Kotnala, K.C. Verma, Adv. Mat. Lett. 3, 504 (2012)Google Scholar
  14. 14.
    M. Rahimi, P. Kameli, M. Ranjbar, H. Hajihashemi, H. Salamati, J. Mater. Sci. 48, 2969 (2013)CrossRefADSGoogle Scholar
  15. 15.
    V. Corral-Flores, D. Bueno-Baqués, F. Paraguay-Delgado, C.E. Botez, R. Ibarra-Gómez, R. Ziolo, Phys. Stat. Sol. A 204, 1742 (2007)CrossRefADSGoogle Scholar
  16. 16.
    T. Anjaneyulu, A.T. Raghavender, K.V. Kumar, P.N. Murthy, K. Narendra, Ind. J. Res. 2, 310 (2013)Google Scholar
  17. 17.
    Z. Beji, A. Hanini, L.S. Smiri, J. Gavard, K. Kacem, F. Villain, J.-M. Greneche, F. Chau, S. Ammar, Chem. Mater. 22, 5420 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Hamedoun, A. Benyoussef, M. Bousmina, J. Magn. Magn. Mater. 322, 3227 (2010)CrossRefADSGoogle Scholar
  19. 19.
    A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, J. Appl. Phys. 109, 083939 (2011)CrossRefADSGoogle Scholar
  20. 20.
    V. Mohite, Ph.D. thesis, Florida State University, 2004Google Scholar
  21. 21.
    S.S. Hayek, C. Chen, G. Flores, C.D. Batich, Y.S. Haik, in MRS Proceedings, 2007, Vol. 1019Google Scholar
  22. 22.
    C. Xiaoming, Z. Dongsheng, T. Qiusha, G. Ning, Z. Susu, Z.Z. Jia, Zhongshan Univ. J. Nat. Sci. 3, 23 (2007)Google Scholar
  23. 23.
    K. Parekh, R.V. Upadhyay, L. Belova, K.V. Rao, Nanotechnology 17, 5970 (2006)CrossRefADSGoogle Scholar
  24. 24.
    M. Jeun, S.J. Moon, H. Kobayashi, H.Y. Shin, A. Tomitaka, Y.J. Kim, Y. Takemura, S.H. Paek, K.H. Park, K.W. Chung, S. Bae, Appl. Phys. Lett. 96, 202511 (2010)CrossRefADSGoogle Scholar
  25. 25.
    J. Zhang, D. Zhang, Sensors 9, 7058 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Ichiyanagi, Y. Moro, H. Katayanagi, S. Kimura, D. Shigeoka, T. Hiroki, T. Mashino, J. Therm. Anal. Calorim. 99, 83 (2010)CrossRefGoogle Scholar
  27. 27.
    A.B. van Groenou, P.F. Bougers, A.L. Stuyts, Mater. Sci. Eng. 3, 317 (1968/1969)CrossRefGoogle Scholar
  28. 28.
    J. Slama, A. Grukova, M. Usakova, E. Usak, J. Subrt, J. Lukac, J. Elect. Eng. 57, 159 (2006)Google Scholar
  29. 29.
    M.A. Gilleo, J. Phys. Chem. Sol. 13, 33 (1960)CrossRefADSGoogle Scholar
  30. 30.
    I. Nowik, J. Appl. Phys. 40, 872 (1969)CrossRefADSGoogle Scholar
  31. 31.
    Y. Yafel, C. Kittel, Phys. Rev. 87, 290 (1952)CrossRefADSGoogle Scholar
  32. 32.
    P.G. Bercoff, H.R. Bertorello, J. Magn. Magn. Mater 213, 56 (2000)CrossRefADSGoogle Scholar
  33. 33.
    M. Rahimi, P. Kameli, M. Rajbar, H. Hejihashemi, H. Salamati, J. Mater. Sci. 48, 2696 (2013)CrossRefGoogle Scholar
  34. 34.
    N.S.S. Murthy, M.G. Natera, S.I. Yossef, R.J. Begum, Phys. Rev. 181, 969 (1969)CrossRefADSGoogle Scholar
  35. 35.
    H.H. Joshi, R.G. Kulkarni, J. Mat. Sci. 21, 2138 (1986)CrossRefADSGoogle Scholar
  36. 36.
    K.S. Lohar, S.M. Patange, S.E. Shirsath, V.S. Surywansh, S.S. Gaikwad, S.S. Jadhav, N. Kulkarni, Imt. J. Adv. Eng. Technol. 3, 354 (2012)Google Scholar
  37. 37.
    L.K. Leung, B.J. Evans, A.H. Morrish, Phys. Rev. B 8, 29 (1973)CrossRefADSGoogle Scholar
  38. 38.
    M. Ajmal, A. Maqsood, J. Alloys Compd. 460, 54 (2008)CrossRefGoogle Scholar
  39. 39.
    S. Noor, R. Islam, S.S. Sikder, M.A. Hakim, S.M. Hoque, S. Rehaman, M.O. Rehaman, J. Mater. Sci. Eng. A 1, 1000 (2011)Google Scholar
  40. 40.
    J.M. Wesselinowa, I. Apostolova, J. Phys.: Condens. Matter 19, 406235 (2007)Google Scholar
  41. 41.
    J. Korecki, M. Przybylski, U. Gradmann, J. Magn. Magn. Mater. 89, 325 (1990)CrossRefADSGoogle Scholar
  42. 42.
    J. Smit, A.P.J. Wijn, Ferrites, Hexagonal Ferrites (Philips Tech. Library, Eindhoven, 1959)Google Scholar
  43. 43.
    S.A. Mazen, S.F. Mansour, H.M. Zaki, Cryst. Res. Technol. 38, 471 (2003)CrossRefGoogle Scholar
  44. 44.
    Sh. Auhfer, D.P. Paul, Md.A. Hakim, Sh. Akhfer, Sh.M. Hoque, A.N. Das, J. Mod. Phys. 3, 398 (2012)CrossRefGoogle Scholar
  45. 45.
    E. De Grave, R.M. Persoons, R.E. Vanderberghe, P.M.A. de Bakker, Phys. Rev. B 47, 5881 (1993)CrossRefADSGoogle Scholar
  46. 46.
    H.S. Belson, C.J. Kriessman, J. Appl. Phys. 30, 170 (1959)CrossRefADSGoogle Scholar
  47. 47.
    J.K. Galt, B.T. Mafthias, J.P. Remeika, Phys. Rev. 79, 1391 (1950)CrossRefADSGoogle Scholar
  48. 48.
    T. Okamura, Y. Kojima, Phys. Rev. 86, 1040 (1952)CrossRefADSGoogle Scholar
  49. 49.
    S. Tikadzumi, Physics of Magnetism (Wiley, New York, 1964)Google Scholar
  50. 50.
    J.F. Dillon, S. Geschwind, V. Jeccavino, Phys. Rev. 100, 750 (1955)CrossRefADSGoogle Scholar
  51. 51.
    M.L. Glasser, F.J. Milford, Phys. Rev. 130, 1783 (1963)CrossRefADSGoogle Scholar
  52. 52.
    J.M. Wesselinowa, I. Apostolova, J. Phys.: Condens. Matter 19, 216208 (2007)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A.T. Apostolov
    • 1
  • I.N. Apostolova
    • 2
  • J.M. Wesselinowa
    • 3
    Email author
  1. 1.University of Architecture, Civil Engineering and Geodesy, Faculty of HydrotechnicsDepartment of PhysicsSofiaBulgaria
  2. 2.University of Forestry, Faculty of Forest IndustrySofiaBulgaria
  3. 3.University of Sofia, Department of PhysicsSofiaBulgaria

Personalised recommendations