Advertisement

The noisy Hegselmann-Krause model for opinion dynamics

  • Miguel PinedaEmail author
  • Raúl Toral
  • Emilio Hernández-García
Regular Article

Abstract

In the model for continuous opinion dynamics introduced by Hegselmann and Krause, each individual moves to the average opinion of all individuals within an area of confidence. In this work we study the effects of noise in this system. With certain probability, individuals are given the opportunity to change spontaneously their opinion to another one selected randomly inside the opinion space with different rules. If the random jump does not occur, individuals interact through the Hegselmann-Krause’s rule. We analyze two cases, one where individuals can carry out opinion random jumps inside the whole opinion space, and other where they are allowed to perform jumps just inside a small interval centered around the current opinion. We found that these opinion random jumps change the model behavior inducing interesting phenomena. Using pattern formation techniques, we obtain approximate analytical results for critical conditions of opinion cluster formation. Finally, we compare the results of this work with the noisy version of the Deffuant et al. model [G. Deffuant, D. Neu, F. Amblard, G. Weisbuch, Adv. Compl. Syst. 3, 87 (2000)] for continuous-opinion dynamics.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    D. Stauffer, AIP Conf. Proc. 779, 56 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 592 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    J. Lorenz, Int. J. Mod. Phys. C 18, 119 (2007)CrossRefGoogle Scholar
  4. 4.
    J. Lorenz, Complexity 15, 43 (2010)MathSciNetGoogle Scholar
  5. 5.
    G. Deffuant, D. Neu, F. Amblard, G. Weisbuch, Adv. Compl. Syst. 3, 87 (2000)CrossRefGoogle Scholar
  6. 6.
    U. Krause, in Commun. Difference Equations, edited by S. Elyadi, G. Ladas, J. Popenda, J. Rakowski (Gordon and Breach Pub., Amsterdam, 2000), pp. 227–236Google Scholar
  7. 7.
    R. Hegselmann, U. Krause, J. Artif. Soc. Soc. Simul. 5, 2 (2002)Google Scholar
  8. 8.
    F. Fortunato, Int. J. Mod. Phys. C 16, 259 (2005)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    F. Slanina, Eur. Phys. J. B 79, 99 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    M. Granovetter, Am. J. Sociol. 83, 1420 (1978) CrossRefGoogle Scholar
  11. 11.
    R. Axelrod, J. Conflict Res. 41, 203 (1997)CrossRefGoogle Scholar
  12. 12.
    D. Urbig, J. Lorenz, H. Herzberg, J. Artif. Soc. Soc. Simul. 11, 4 (2008)Google Scholar
  13. 13.
    M.F. Laguna, G. Abramson, D.H. Zanette, Complexity 9, 31 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Porfiri, E.M. Bolt, D.J. Stilwell, Eur. Phys. J. D 57, 481 (2007)CrossRefGoogle Scholar
  15. 15.
    E. Ben-Naim, P.L. Krapivsky, S. Redner, Physica D 183, 190 (2003) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    M. Pineda, R. Toral, E. Hernández-García, J. Stat. Mech. 2009, P08001 (2009) CrossRefGoogle Scholar
  17. 17.
    M. Pineda, R. Toral, E. Hernández-García, Eur. Phys. J. D 62, 109 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Grauwin, P. Jensen, Phys. Rev. E 85, 066113 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    T. Carletti, D. Fanelli, A. Guarino, F. Bagnoli, A. Guazzini, Eur. Phys. J. B 64, 285 (2008)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    J. Török, G. Iniguez, T. Yasseri, M.S. San Miguel, K. Kaski, J. Kertesz, Phys. Rev. Lett. 110, 088701 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    I. Douven, Logic Journal of the IGPL 18, 323 (2010)CrossRefMathSciNetGoogle Scholar
  22. 22.
    N. Friedkin, A structural Theory of Social Influence (Cambridge University Press, Cambridge, 1998)Google Scholar
  23. 23.
    S. Fortunato, V. Latora, A. Pluchino, A. Rapisarda, Int. J. Mod. Phys. C 16, 1535 (2005) ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    J. Lorenz, J. Artif. Soc. Soc. Simul. 9, 8 (2006)Google Scholar
  25. 25.
    K. Sznajd-Weron, M. Tabiszewski, A.M. Timpanaro, Europhys. Lett. 96, 48002 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    E. Ben-Naim, Europhys. Lett. 69, 671 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miguel Pineda
    • 1
    Email author
  • Raúl Toral
    • 2
  • Emilio Hernández-García
    • 2
  1. 1.Department of PhysicsUniversidad Simón BolívarCaracasVenezuela
  2. 2.IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations