Investigation of a universal behavior between Néel temperature and staggered magnetization density for a three-dimensional quantum antiferromagnet

  • M.T. Kao
  • F.J. JiangEmail author
Regular Article


We simulate the three-dimensional quantum Heisenberg model with a spatially anisotropic ladder pattern using the first principles Monte Carlo method. Our motivation is to investigate quantitatively the newly established universal relation T N /√c 3 ∝ ℳ s near the quantum critical point (QCP) associated with dimerization. Here T N , c, and ℳ s are the Néel temperature, the spinwave velocity, and the staggered magnetization density, respectively. For all the physical quantities considered here, such as T N and ℳ s , our Monte Carlo results agree nicely with the corresponding results determined by the series expansion method. In addition, we find it is likely that the effect of a logarithmic correction, which should be present in (3 + 1)-dimensions, to the relation T N /√c 3 ∝ ℳ s near the investigated QCP only sets in significantly in the region with strong spatial anisotropy.


Solid State and Materials 


  1. 1.
    V. Hinkov, P. Bourges, S. Pailhes, Y. Sidis, A. Ivanov, C.D. Frost, T.G. Perring, C.T. Lin, D.P. Chen, B. Keimer, Nat. Phys. 3, 780 (2007)CrossRefGoogle Scholar
  2. 2.
    V. Hinkov et al., Science 319, 597 (2008)CrossRefGoogle Scholar
  3. 3.
    T. Pardini, R.R.P. Singh, A. Katanin, O.P. Sushkov, Phys. Rev. B 78, 024439 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    S. Sachdev, C. Buragohain, M. Vojta, Science 286, 2479 (1999)CrossRefGoogle Scholar
  5. 5.
    M. Vojta, C. Buragohain, S. Sachdev, Phys. Rev. B 61, 15152 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    S. Sachdev, M. Troyer, M. Vojta, Phys. Rev. Lett. 86, 2617 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    M. Troyer, Prog. Theor. Phys. Supp. 145, 326 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Munehisa Matsumoto, Chitoshi Yasuda, Synge Todo, Hajime Takayama, Phys. Rev. B 65, 014407 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    K.H. Höglund, A.W. Sandvik, Phys. Rev. Lett. 91, 077204 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    L. Wang, K.S.D. Beach, A.W. Sandvik, Phys. Rev. B 73, 014431 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Kwai-Kong Ng, T.K. Lee, Phys. Rev. Lett. 97, 127204 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    A.F. Albuquerque, M. Troyer, J. Oitmaa, Phys. Rev. B 78, 132402 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Kulik, O.P. Sushkov, Phys. Rev. B 84, 134418 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    J. Oitmaa, Y. Kulik, O.P. Sushkov, Phys. Rev. B 85, 144431 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Ch. Rüegg et al., Phys. Rev. Lett. 100, 205701 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S. Jin, A.W. Sandvik, Phys. Rev. B 85, 020409(R) (2012)ADSCrossRefGoogle Scholar
  17. 17.
    A.W. Sandvik, Phys. Rev. B 66, R14157 (1999)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    O. Nohadani, S. Wessel, S. Haas, Phys. Rev. B 72, 024440 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    J. Oitmaa, C.J. Hamer, Zheng Weihong, Phys. Rev. B 50, 3877 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    J. Oitmaa, Weihong Zheng, J. Phys.: Condens. Matter 16, 8653 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations