Advertisement

Influence of nonlinearities on the dynamics of thermally fluctuating systems revealed by the expansion of dynamic observables in powers of the thermal noise strength

  • Yann von HansenEmail author
  • Roland R. Netz
Regular Article
  • 90 Downloads

Abstract

The effects of nonlinearities in the equations of motion of thermally fluctuating systems are investigated based on the Langevin equation. We identify the first terms in the expansions of equilibrium correlation functions and dynamic susceptibilities in powers of the thermal noise strength. The resulting expressions are explicitly evaluated for the case of overdamped diffusion in two monostable but anharmonic potentials, as well as in a double-well potential. The comparison to the results of numerical simulations allows to estimate the range of validity of our analytical results. Moreover, we provide a simple method to detect nonlinearities in the fluctuating time series data of a system in thermal equilibrium and discuss the resulting implications for the dynamics of composite systems. Finally, our findings shed light on the limitations of a recently introduced linear dynamic convolution theory, for which we derive a first-order correction term.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A.R. Bulsara, K. Lindenberg, K.E. Shuler, J. Stat. Phys. 27, 787 (1982)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    K.J. Tielrooij, N. Garcia-Araez, M. Bonn, H.J. Bakker, Science 328, 1006 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    H. Dietz, F. Berkemeier, M. Bertz, M. Rief, Proc. Natl. Acad. Sci. USA. 103, 12724 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    T.K. Caughey, J.K. Dienes, J. Appl. Phys. 32, 2476 (1961)MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    N.V. Agudov, A.V. Krichigin, Int. J. Bifur. Chaos 18, 2833 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    P. Hänggi, H. Thomas, Phys. Rep. 88, 207 (1982)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    J. Casado-Pascual, J. Gomez-Ordonez, M. Morillo, P. Hänggi, Europhys. Lett. 58, 342 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    M. Hinczewski, Y. von Hansen, R.R. Netz, Proc. Natl. Acad. Sci. USA. 107, 21493 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    R. Zwanzig, J. Stat. Phys. 9, 215 (1973)ADSCrossRefGoogle Scholar
  11. 11.
    H. Risken, The Fokker-Planck Equation – Methods of Solution and Applications, 3rd edn. (Springer-Verlag, New York, 1996)Google Scholar
  12. 12.
    L. Schmidt, R.R. Netz, Europhys. Lett. 98, 10014 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    K.S. Nordholm, R. Zwanzig, J. Stat. Phys. 11, 143 (1974)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    R.F. Rodriguez, N.G. van Kampen, Physica A 85, 347 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    J.J. Brey, J.M. Casado, M. Morillo, Phys. Rev. A 32, 2893 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    J.W. Negele, H. Orland, Quantum Many-Particle Systems (Addison-Wesley, New York, 1988)Google Scholar
  17. 17.
    V.A. Shneidman, P. Jung, P. Hänggi, Europhys. Lett. 26, 571 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    V.A. Shneidman, P. Jung, P. Hänggi, Phys. Rev. Lett. 72, 2682 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    B.S. Khatri, M. Kawakami, K. Byrne, D.A. Smith, T.C.B. McLeish, Biophys. J. 92, 1825 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    L. Schmidt, Stochastic Effects in Coupled Systems, Diploma thesis, Technical University of Munich, 2011Google Scholar
  21. 21.
    K. Berg-Sørensen, H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Y. von Hansen, A. Mehlich, B. Pelz, M. Rief, R.R. Netz, Rev. Sci. Instrum. 83, 095116 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Hinczewski, J.C.M. Gebhardt, M. Rief, and D. Thirumalai, Proc. Natl. Acad. Sci. USA. 110, 4500 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    J.L. Hutter J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, Cambridge, 1992)Google Scholar
  26. 26.
    V. Vrabie, P. Granjon, C. Serviere, in 6th IEEE International Workshop on Nonlinear Signal and Image Processing, Grado-Trieste, Italy (2003)Google Scholar
  27. 27.
    P. Bloomfield, Fourier Analysis of Time Series: An Introduction (John Wiley & Sons, New York, 1976)Google Scholar
  28. 28.
    H.A. Kramers, Physica 7, 284 (1940)MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsFreie Universität BerlinBerlinGermany
  2. 2.Physics Department, Technische Universität MünchenGarchingGermany

Personalised recommendations