Spin glass approach to the feedback vertex set problem

  • Hai-Jun ZhouEmail author
Regular Article


A feedback vertex set (FVS) of an undirected graph is a set of vertices that contains at least one vertex of each cycle of the graph. The feedback vertex set problem consists of constructing a FVS of size less than a certain given value. This combinatorial optimization problem has many practical applications, but it is in the nondeterministic polynomial-complete class of worst-case computational complexity. In this paper we define a spin glass model for the FVS problem and then study this model on the ensemble of finite-connectivity random graphs. In our model the global cycle constraints are represented through the local constraints on all the edges of the graph, and they are then treated by distributed message-passing procedures such as belief propagation. Our belief propagation-guided decimation algorithm can construct nearly optimal feedback vertex sets for single random graph instances and regular lattices. We also design a spin glass model for the FVS problem on a directed graph. Our work will be very useful for identifying the set of vertices that contribute most significantly to the dynamical complexity of a large networked system.


Statistical and Nonlinear Physics 


  1. 1.
    S.A. Cook, The complexity of theorem-proving procedures, in Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, edited by P.M. Lewis, M.J. Fischer, J.E. Hopcroft, A.L. Rosenberg, J.W. Thatcher, P.R. Young (New York, ACM, 1971), pp. 151–158Google Scholar
  2. 2.
    R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, edited by E. Miller, J.W. Thatcher, J.D. Bohlinger (New York Plenum Press, 1972), pp. 85–103Google Scholar
  3. 3.
    M. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979)Google Scholar
  4. 4.
    L.W. Beineke, R.C. Vandell, J. Graph Theory 25, 59 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    D. Zöbel, SIGOPS Oper. Syst. Rev. 17, 6 (1983)CrossRefGoogle Scholar
  6. 6.
    B. Fiedler, A. Mochizuki, G. Kurosawa, D. Saito, J. Dyn. Diff. Eq. 25, 563 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    A. Mochizuki, B. Fiedler, G. Kurosawa, D. Saito, J. Theor. Biol. 335, 130 (2013)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Nature 473, 167 (2011)CrossRefADSGoogle Scholar
  9. 9.
    Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Proc. Natl. Acad. Sci. USA 110, 2460 (2013)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    G. Bianconi, M. Marsili, J. Stat. Mech.: Theor. Exp. 2005, P06005 (2005)CrossRefGoogle Scholar
  11. 11.
    E. Marinari, R. Monasson, G. Semerjian, Europhys. Lett. 73, 8 (2006)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    E. Marinari, G. Semerjian, J. Stat. Mech.: Theor. Exp. 2006, P06019 (2006)CrossRefMathSciNetGoogle Scholar
  13. 13.
    E. Marinari, G. Semerjian, V. Van Kerrebroeck, Phys. Rev. E 75, 066708 (2007)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    G. Bianconi, N. Gulbahce, J. Phys. A 41, 224003 (2008)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Da-Ren He, Zong-Hua Liu, Bing-Hong Wang, Complex Systems and Complex Network (Higher Education Press, Beijing, 2009)Google Scholar
  16. 16.
    M. Bayati, C. Borgs, A. Braunstein, J. Chayes, Phys. Rev. Lett. 101, 037208 (2008)CrossRefADSGoogle Scholar
  17. 17.
    M. Bailly-Bechet, C. Borgs, A. Braunstein, J. Cheyes, A. Dagkessamanskaia, J.-M. Francois, R. Zecchina, Proc. Natl. Acad. Sci. USA 108, 882 (2011)CrossRefADSGoogle Scholar
  18. 18.
    I. Biazzo, A. Braunstein, R. Zecchina, Phys. Rev. E 86, 026706 (2012)CrossRefADSGoogle Scholar
  19. 19.
    H.A. Bethe, Proc. R. Soc. London A 150, 552 (1935)CrossRefzbMATHADSGoogle Scholar
  20. 20.
    R. Peierls, Proc. R. Soc. London A 154, 207 (1936)CrossRefzbMATHADSGoogle Scholar
  21. 21.
    R. Peierls, Proc. Camb. Phil. Soc. 32, 477 (1936)CrossRefzbMATHADSGoogle Scholar
  22. 22.
    M. Mézard, A. Montanari, Information, Physics, and Computation (Oxford Univ. Press, New York, 2009)Google Scholar
  23. 23.
    H.-J. Zhou, C. Wang, J. Stat. Phys. 148, 513 (2012)CrossRefzbMATHMathSciNetADSGoogle Scholar
  24. 24.
    J.-Q. Xiao, H.-J. Zhou, J. Phys. A 44, 425001 (2011)CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    H.-J. Zhou, C. Wang, J.-Q. Xiao, Z. Bi, J. Stat. Mech.: Theo. Exp. 2011, L12001 (2011)CrossRefGoogle Scholar
  26. 26.
    R. Kikuchi, Phys. Rev. 81, 988 (1951)CrossRefzbMATHMathSciNetADSGoogle Scholar
  27. 27.
    G. An, J. Stat. Phys. 52, 727 (1988)CrossRefzbMATHADSGoogle Scholar
  28. 28.
    M. Mézard, G. Parisi, Eur. Phys. J. B 20, 217 (2001)CrossRefADSGoogle Scholar
  29. 29.
    S. Bau, N.C. Wormald, S.-M. Zhou, Random Struct. Alg. 21, 397 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    V. Bafna, P. Berman, T. Fujito, SIAM J. Discrete Math. 12, 289 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    A. Lucas, arXiv:1302.5841 (2013)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China

Personalised recommendations