Two-electron quantum dot in tilted magnetic fields: Sensitivity to the confinement model

  • T. Frostad
  • J. P. HansenEmail author
  • C. J. Wesslén
  • E. Lindroth
  • E. Räsänen
Regular Article


Semiconductor quantum dots are conventionally treated within the effective-mass approximation and a harmonic model potential in the two-dimensional plane for the electron confinement. The validity of this approach depends on the type of the quantum-dot device as well as on the number of electrons confined in the system. Accurate modeling is particularly demanding in the few-particle regime, where screening effects are diminished and thus the system boundaries may have a considerable effect on the confining potential. Here we solve the numerically exact two-electron states in both harmonic and hard-wall model quantum dots subjected to tilted magnetic fields. Our numerical results enable direct comparison against experimental singlet-triplet energy splittings. Our analysis shows that hard and soft wall models produce qualitatively different results for quantum dots exposed to tilted magnetic fields. Hence, we are able to address the sensitivity of the two-body phenomena to the modeling, which is of high importance in realistic spin-qubit design.


Mesoscopic and Nanoscale Systems 


  1. 1.
    S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys. 64, 701 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Nature 430, 431 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J.J. Finley, Nature 432, 81 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    A.C. Johnson, J.R. Petta, J.M. Taylor, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Nature 435, 925 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    T. Meunier, I.T. Vink, L.H. Willems van Beveren, K.-J. Tielrooij, R. Hanson, F.H.L. Koppens, H.P. Tranitz, W. Wegscheider, L.P. Kouwenhoven, L.M.K. Vandersypen Phys. Rev. Lett. 98, 126601 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Hansen, S.A. Sørngård, M. Førre, E. Räsänen, Phys. Rev. B 85, 035326 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    V.N. Golovach, A. Khaetskii, D. Loss, Phys. Rev. B 77, 045328 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J.I. Climente, A. Bertoni, G. Bertoni, M. Rontani, E. Molinari, Phys. Rev. B 76, 085305 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    J.I. Climente, A. Bertoni, G. Bertoni, M. Rontani, E. Molinari, Phys. Rev. B 75, 081303 (R) (2007)ADSCrossRefGoogle Scholar
  12. 12.
    M. Florescu, P. Hawrylak, Phys. Rev. B 73, 045304 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    D. Chaney, P.A. Maksym, Phys. Rev. B 75, 035323 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J.I. Climente, C. Segarra, J. Planelles, New J. Phys. 15, 093009 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Leburton, J. Pascual, C.M. Sotomayor-Torres, Phonons in Semiconductor Nanostructures (Kluwer Academic Publishers, Dordrecht, 1993)Google Scholar
  16. 16.
    E. Räsänen, J. Könemann, R.J. Haug, M.J. Puska, R.M. Nieminen, Phys. Rev. B 70, 115308 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    E. Räsänen, Ph.D. Thesis, Helsinki University of Technology, 2004Google Scholar
  18. 18.
    E. Räsänen, H. Saarikoski, A. Harju, M. Ciorga, A.S. Sachrajda, Phys. Rev. B 77, 041302(R) (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M. Rogge, E. Räsänen, R.J. Haug, Phys. Rev. Lett. 105, 046802 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    V. Popsueva, R. Nepstad, T. Birkeland, M. Førre, J.P. Hansen, E. Lindroth, E. Waltersson, Phys. Rev. B 76, 035303 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    F. Geerinckx, F.M. Peeters, J.T. Devreese, J. Appl. Phys. 68, 3435 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    C.S. Lent, Phys. Rev. B 43, 4179 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    E. Räsänen, M.J. Puska, R.M. Nieminen, Physica E 22, 490 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    A. Fuhrer, S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Phys. Rev. B 63, 125309 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    H.S. Cohl, A.R.P. Rau, J.E. Tohline, D.A. Browne, J.E. Cazes, E.I. Barnes, Phys. Rev. A 64, 052509 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    N.S. Simonovic, R.G. Nazmitdinov, Phys. Rev. A 78, 032115 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Nishi, Y. Tokura, J. Gupta, G. Austing, S. Tarucha, Phys. Rev. B 75, 121301 (R) (2007)ADSCrossRefGoogle Scholar
  28. 28.
    E. Lieb, D. Mattis, J. Math. Phys. 3, 749 (1962)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. Frostad
    • 1
  • J. P. Hansen
    • 1
    Email author
  • C. J. Wesslén
    • 2
  • E. Lindroth
    • 2
  • E. Räsänen
    • 3
  1. 1.Department of Physics and TechnologyUniversity of BergenBergenNorway
  2. 2.Department of PhysicsStockholm UniversityStockholmSweden
  3. 3.Department of PhysicsTampere University of TechnologyTampereFinland

Personalised recommendations