Pattern formation in the models with coupling between order parameter and its gradient

  • B. I. LevEmail author
  • A. G. Zagorodny
Regular Article


A possibility of pattern formation in the models of the first order phase transitions with coupling between the order parameter and its gradient is discussed. We use the standard model of phase transitions extended to the higher derivatives of the order parameter that makes possible to describe the formation of various spatial distributions of the order parameter after phase transition. An example of the simple model with coupling between the order parameter and its gradient is considered. The proposed model is analogical to the mechanical nonlinear oscillator with the coordinate-dependent mass or velocity-dependent elastic module. The exact solution of this model is obtained that can be used to predict the order parameter distribution in the case of a spinodal decomposition.


Statistical and Nonlinear Physics 


  1. 1.
    L.D. Landau, E.M. Lifshitz,Statistical Physics (Nauka, Moscow, 1976)Google Scholar
  2. 2.
    A.D. Linde,Elementary particle physics and inflationary cosmology (Horwood Academic, Switzerland, 1990)Google Scholar
  3. 3.
    P. Chaikin, T.C. Lubensky,Principle of Condensed Matter Physics (Cambridge University Press, New York, 1998)Google Scholar
  4. 4.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon Press, Oxford, 1993)Google Scholar
  5. 5.
    J.S. Langer, Ann. Phys. 41, 108 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    P. Aviles, Y. Giga, Proc. Center Math Analysis Australian National University 12, 1 (1987)MathSciNetGoogle Scholar
  7. 7.
    P. Aviles, Y. Giga, Proc. Roy. Soc. Edinburgh A 129, 1 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Mihailescu, arXiv:0710.5076v2 [cond-mat.soft] (2007)Google Scholar
  9. 9.
    Z. Nussinov, I. Vekhter, A.V. Balatsky, Phys. Rev. B 79, 165122 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    M. Seul, D. Andelman, Science 267, 476 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Nusinov, arXiv:0105253v12 [cond-mat.statmech] (2004)Google Scholar
  12. 12.
    S.B. Goryachev, Phys. Rev. Lett. 72, 1815 (1994)CrossRefGoogle Scholar
  13. 13.
    G. Gioia, M. Ortiz, Adv. Appl. Mech. 33, 119 (1997)CrossRefGoogle Scholar
  14. 14.
    M. Ortiz, G. Gioia, J. Mech. Phys. Solids 42, 531 (1994)MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    N.M. Ercolani, R. Indik, A.C. Newell, T. Passot, J. Nonlin. Sci. 10, 223 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Baldo, Ann. Inst. H. Poincaré 7, 67 (1990)MathSciNetzbMATHGoogle Scholar
  17. 17.
    R.A. Cowley, Phys. Rev. B 13, 4877 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    M. Cross, A. Newell, Physica D 10, 299 (1984)MathSciNetADSCrossRefzbMATHGoogle Scholar
  19. 19.
    A. Newell, T. Passot, C. Bowman, N. Ercolani, R. Indik, Physica D 97, 185 (1996)CrossRefGoogle Scholar
  20. 20.
    E. Kamke, Differential Gleichunger, Losungs Methoden und Losungen (Verbesserte Auflage, Leipzig, 1959)Google Scholar
  21. 21.
    Jingdong Bao I., Yizhong Zhuo, Xizhen Wu, Z. Phys. A 347, 217 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    Krishna Kumar, Prog. Theor. Phys. 84, 373 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    M. Yamamura, Prog. Theor. Phys. 64, 94 (1980)MathSciNetADSCrossRefzbMATHGoogle Scholar
  24. 24.
    H. Kleinert, A. Chervyakov, arXiv:quant-ph/0206022v1 (2002)Google Scholar
  25. 25.
    B. Delamotte, Phys. Rev. Lett. 70, 3361 (1993)MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. 26.
    I. Andrianov, J. Awrejcewicz, Int. J. Nonlin. Sci. Num. Simul. 1, 327 (2000)MathSciNetzbMATHGoogle Scholar
  27. 27.
    C.M. Bender, K.A. Milton, S.S. Pinsky, L.M. Simmons, J. Math. Phys. 30, 1447 (1989)MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. 28.
    A.H. Nayfeh,Introduction to Perturbation Techniques (Wiley, New York, 1981)Google Scholar
  29. 29.
    Ji-Huan He, Int. J. Nonlinear Mech. 35, 37 (2000)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Ji-Huan He, Int. J. Nonlinear Mech. 34, 699 (1999)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Ji-Huan He, Phys. Rev. Lett. 90, 174301 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    W. Jin, R.V. Kohn, J. Nonlinear Sci. 10, 355 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bogolyubov Institute for Theoretical PhysicsNAS UkraineKyivUkraine
  2. 2.Nanotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations