Ground states of two-component condensates in a harmonic plus Gaussian trap

Regular Article

Abstract

The possible symmetry preserving and symmetry breaking ground states of a two-dimensional, two-component Bose-Einstein condensate are classified in terms of the intercomponent and intracomponent interaction strengths and in terms of the parameters of the trapping potential, which is taken to be harmonic plus Gaussian. An effective potential can be defined which shows that the symmetry preserving ground states of the total density are either disks or annuli. The possibilities to compose a total density of these forms gives rise to a number of different ground states of the individual components’ density profiles.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    K. Henderson, C. Ryu, C. MacCormick, M.G. Boshier, New J. Phys. 11, 043040 (2009)CrossRefGoogle Scholar
  2. 2.
    O. Morizot, Y. Colombe, V. Lorent, H. Perrin, B.M. Garraway, Phys. Rev. A 74, 023617 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    C. Ryu, M.F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 99, 260401 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    L. Mathey, A. Ramanathan, K.C. Wright, S.R. Muniz, W.D. Phillips, C.W. Clark, Phys. Rev. A 82, 033607 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    T.I. Zueva, Low Temp. Phys. 26, 85 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    J.-P. Martikainen, K.-A. Suominen, L. Santos, T. Schulte, A. Sanpera, Phys. Rev. A 64, 063602 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    T. Schulte, L. Santos, A. Sanpera, M. Lewenstein, Phys. Rev. A 66, 033602 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    M. Lakaniemi, arXiv:0708.1898v3 (2008)Google Scholar
  10. 10.
    P. Mason, N.G. Berloff, Phys. Rev. A 79, 043620 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    J. Smyrnakis, S. Bargi, G.M. Kavoulakis, M. Magiropoulos, K. Kärkkäinen, S.M. Reimann, Phys. Rev. Lett. 103, 100404 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    S. Bargi, F. Malet, G.M. Kavoulakis, S.M. Reimann, Phys. Rev. A 82, 043631 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    A. Aftalion, P. Mason, Phys. Rev. A 81, 023607 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A.L. Fetter, B. Jackson, S. Stringari, Phys. Rev. A 71, 013605 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    F. Malet, G.M. Kavoulakis, S.M. Reimann, Phys. Rev. A 81, 013630 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    K. Sasaki, N. Suzuki, D. Akamatsu, H. Saito, Phys. Rev. A 80, 063611 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    S. Gautam, D. Angom, Phys. Rev. A 81, 053616 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto, H. Saito, Phys. Rev. A 85, 013602 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, M. Tsubota, Phys. Rev. B 81, 094517 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    N. Suzuki, H. Takeuchi, K. Kasamatsu, M. Tsubota, H. Saito, Phys. Rev. A 82, 063604 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    V.A. Brazhnyi, V.M. Perez-Garcia, Chaos Solitons Fract. 44, 381 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    J. Smyrnakis, M. Magiropoulos, G.M. Kavoulakis, A.D. Jackson, Phys. Rev. A 82, 023604 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    J. Smyrnakis, M. Magiropoulos, G.M. Kavoulakis, A.D. Jackson, Phys. Rev. A 81, 063601 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    D.M. Jezek, P. Capuzzi, M. Guilleumas, R. Mayol, Phys. Rev. A 78, 053616 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    J. Brand, T.J. Haigh, U. Zülicke, Phys. Rev. A 80, 011602(R) (2009)ADSCrossRefGoogle Scholar
  26. 26.
    P.L. Halkyard, M.P.A. Jones, S.A. Gardiner, Phys. Rev. A 81, 061602(R) (2010)ADSCrossRefGoogle Scholar
  27. 27.
    T. Shimodaira, T. Kishimoto, H. Saito, Phys. Rev. A 82, 013647 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    A. Aftalion, X. Blanc, J. Dalibard, Phys. Rev. A 71, 023611 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    P. Mason, A. Aftalion, Phys. Rev. A 84, 033611 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    L. Wen, W.M. Liu, Y. Cai, J.M. Zhang, J. Hu, Phys. Rev. A 85, 043602 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    W. Bao, Y. Cai, East Asian J. Appl. Math. 1, 49 (2011)MATHMathSciNetGoogle Scholar
  32. 32.
    W. Bao, Multiscale Model. Simul. 2, 210 (2004)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    K. Kasamatsu, M. Tsubota, M. Ueda, Phys. Rev. A 66, 053606 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    H. Fu, E. Zaremba, Phys. Rev. A 73, 013614 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    H. Takeuchi, K. Kasamatsu, M. Tsubota, AIP Conf. Proc. 850, 57 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    C.-H. Hsueh, T.-L. Horng, S.-C. Gou, W.C. Wu, Phys. Rev. A 84, 023610 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    K. Kasamatsu, M. Tsubota, M. Ueda, Phys. Rev. A 71, 043611 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    K. Kasamatsu, M. Tsubota, M. Ueda, Int. J. Mod. Phys. B 19, 1835 (2005)ADSCrossRefMATHGoogle Scholar
  39. 39.
    K. Kasamatsu, Y. Yasui, M. Tsubota, Phys. Rev. A 64, 053605 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    P. Öhberg, S. Stenholm, Phys. Rev. A 57, 1272 (1997)CrossRefGoogle Scholar
  41. 41.
    P. Öhberg, Phys. Rev. A 59, 634 (1998)CrossRefGoogle Scholar
  42. 42.
    H. Pu, N.P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    I. Corro, R.G. Scott, A.M. Martin, Phys. Rev. A 80, 033609 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    R.A. Barankov, Phys. Rev. A 66, 013612 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    S. Hayashi, M. Tsubota, H. Takeuchi, Phys. Rev. A 87, 063628 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    G.M. Kavoulakis, G. Baym, New J. Phys. 5, 51 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Joint Quantum Centre (JQC) Durham-Newcastle, Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations