Advertisement

Quench dynamics of edge states in 2-D topological insulator ribbons

  • Aavishkar A. PatelEmail author
  • Shraddha Sharma
  • Amit Dutta
Regular Article

Abstract

We study the dynamics of edge states of the two dimensional BHZ Hamiltonian in a ribbon geometry following a sudden quench to the quantum critical point separating the topological insulator phase from the trivial insulator phase. The effective edge state Hamiltonian is a collection of decoupled qubit-like two-level systems which get coupled to bulk states following the quench. We notice a pronounced collapse and revival of the Lochschmidt echo for low-energy edge states illustrating the oscillation of the state between the two edges. We also observe a similar collapse and revival in the spin Hall current carried by these edge states, leading to a persistence of its time-averaged value.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    B. Bernevig, T. Hughes, S. Zhang, Science 314, 1757 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    M.H. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3054 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Xiao-Liang Qi, Shou-Cheng Zhang, Rev. Mod. Phys. 83, 1057 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)Google Scholar
  6. 6.
    B.K. Chakrabarti, A. Dutta, P. Sen, Quantum Ising Phases and transitions in transverse Ising Models, m41 (Springer, Heidelberg, 1996)Google Scholar
  7. 7.
    S.L. Sondhi, S.M. Girvin, J.P. Carini, D. Shahar, Rev. Mod. Phys. 69, 315 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    A. Dutta, U. Divakaran, D. Sen, B.K. Chakrabarti, T.F. Rosenbaum, G. Aeppli, arXiv:1012.0653v2 (2010)Google Scholar
  10. 10.
    J. Dziarmaga, Adv. Phys. 59, 1063 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    L.E. Sadler, J.M. Higbie, S.R. Leslie, M. Vengalattore, D.M. Stamper-Kurn, Nature 443, 312 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    W.H. Zurek et al., Phys. Rev. Lett. 95, 105701 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005)ADSCrossRefGoogle Scholar
  15. 15.
    B. Damski, Phys. Rev. Lett. 95, 035701 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    R.W. Cherng, L.S. Levitov, Phys. Rev. A 73, 043614 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    V. Mukherjee, U. Divakaran, A. Dutta, D. Sen, Phys. Rev. B 76, 174303 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    C. De Grandi, V. Gritsev, A. Polkovnikov, Phys. Rev. B 81, 012303 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    C. De Grandi, V. Gritsev, A. Polkovnikov, Phys. Rev. B 81, 224301 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    V. Mukherjee, A. Dutta, Phys. Rev. B 83, 214302 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    A.A. Patel, A. Dutta, Phys. Rev. B 86 174306 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    K. Sengupta, D. Sen, Phys. Rev. A 80, 032304 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    T. Nag, A. Patra, A. Dutta, J. Stat. Mech. 2011, P08026 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Rigol, V. Dunjko, M. Olshanil, Nature 452, 854 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    I. Klich, C. Lannert, G. Refael, Phys. Rev. Lett. 99, 205303 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Phys. Rev. Lett. 96, 140604 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    T.D. Stanescu, V. Galitski, J.Y. Vaishnav, C.W. Clark, S. Das Sarma, Phys. Rev. A 79, 053639 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Nature 496, 196 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    N.H. Lindner, G. Refael, V. Galitski, Nat. Phys. 7, 1926 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Bermudez, L. Amico, M.A. Martin-Delgado, New J. Phys. 12, 055014 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    A. Bermudez, D. Patane, L. Amico, M.A. Martin-Delgado, Phys. Rev. Lett. 102, 135702 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    B. Zhou, H.Z. Lu, R.L. Chu, S.Q. Shen, Q. Niu, Phys. Rev. Lett. 101, 246807 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    M. Konig, H. Buhmann, L.W. Molenkamp, T. Hughes, C.-X. Liu, X.-L. Qi, S.-C. Zhang, J. Phys. Soc. Jpn 77, 031007 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    M. Wada, S. Murakami, F. Freimuth, G. Bihlmayer, Phys. Rev. B 83, 121310(R) (2011)ADSCrossRefGoogle Scholar
  36. 36.
    T. Kitagawa, E. Berg, M. Rudner, E. Demler, Phys. Rev. B 82, 235114 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    M. Thakurathi, A.A. Patel, D. Sen, A. Dutta, arXiv:1303.2300 (2013)Google Scholar
  38. 38.
    A. Rajak, A.A. Patel, A. Dutta, (unpublished) (2013)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aavishkar A. Patel
    • 1
    Email author
  • Shraddha Sharma
    • 1
  • Amit Dutta
    • 1
  1. 1.Department of PhysicsIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations