STM-mediated atom motion: a Co atom and mixed CoCun chains on a Cu(111) surface

  • Renzhong HuangEmail author
  • Yusuning Sun
  • Cuicui Du
  • Tianfu Gao
  • Yuxi Wu
  • Valeris Stepanyuk
Regular Article


Performing atomic scale simulations, we study the effect of the scanning tunneling microscopy tip on atom motion on a metal surface at zero bias voltage. We concentrate on a Co atom and mixed CoCu n (n ⩽ 68) chains on a Cu(111) surface. It is revealed that the atom motion can be tuned by adjusting the tip-substrate distance. The change in the potential landscape induced by the tip is found to depend on the tip height. In the presence of the tip, the Co atom can freely jump from the fcc site to the hcp site or vice versa when putting the tip above the adatom at a certain height. For the mixed CoCu n chains on the Cu(111) surface, the diffusion barrier of the end Co atom from the fcc site to the nearby hcp site increases with the increasing chain length and reaches the limit when the chain length is beyond CoCu7 without the tip. Especially, the short chains can perform a collective motion with the help of the tip. The importance of the relaxation induced by the tip-adatom interaction is demonstrated.


Mesoscopic and Nanoscale Systems 


  1. 1.
    J. Repp, G. Meyer, K.-H. Rieder, P. Hyldgaard, Phys. Rev. Lett. 91, 206102 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    D.M. Eigler, E.K. Schweizer, Nature 344, 524 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    J.A. Stroscio, R.J. Celotta, Science 306, 242 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    C.F. Hirjibehedin, C.P. Lutz, A.J. Heinrich, Science 312, 1021 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    S. Fölsch, P. Hyldgaard, R. Koch, K.H. Ploog, Phys. Rev. Lett. 92, 056803 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    T. Jamneala, V. Madhavan, M.F. Crommie, Phys. Rev. Lett. 87, 256804 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    J. Lagoute, X. Liu, S. Fölsch, Phys. Rev. Lett. 95, 136801 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    T.M. Wallis, N. Nillius, G. Mikaelian, W. Ho, J. Chem. Phys. 122, 011101 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    G.V. Nazin, X.H. Qiu, W. Ho, Phys. Rev. Lett. 90, 216110 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    S.-W. Hla, K.F. Braun, B. Wassermann, K.-H. Rieder, Phys. Rev. Lett. 93, 208302 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    L. Grill, J. Phys.: Condens. Matter 22, 084023 (2010)ADSGoogle Scholar
  12. 12.
    U. Kürpick, T.S. Rahman, Phys. Rev. Lett. 83, 2765 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    A. Deshpande, H. Yildirim, A. Kara, D.P. Acharya, J. Vaughn, T.S. Rahman, S.-W. Hla, Phys. Rev. Lett. 98, 028304 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    N. Martsinovich, L. Kantorovich, Phys. Rev. B 77, 205412 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    N. Oyabu, O. Custance, I. Yi, Y. Sugawara, S. Morita, Phys. Rev. Lett. 90, 176102 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    R.Z. Huang, V.S. Stepanyuk, J. Kirschner, New J. Phys. 10, 083044 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    X. Bouju, C. Joachim, C. Girard, P. Sautet, Phys. Rev. B 47, 7454 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    W.A. Hofer, A.J. Fisher, R.A. Wolkow, P. Grütter, Phys. Rev. Lett. 87, 236104 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    N.A. Levanov, V.S. Stepanyuk, W. Hergert, D.I. Bazhanov, P.H. Dederichs, A.A. Katsnelson, C. Massobrio, Phys. Rev. B 61, 2230 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    K. Wildberger, V.S. Stepanyuk, P. Lang, R. Zeller, P.H. Dederichs, Phys. Rev. Lett. 75, 509 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    V. Rosato, B. Guillope, B. Legrand, Philos. Mag. A 59, 321 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    V.S. Stepanyuk, A.L. Klavsyuk, L. Niebergall, A.M. Saletsky, W. Hergert, P. Bruno, Phase Transit. 78, 61 (2005)CrossRefGoogle Scholar
  24. 24.
    Š. Pick, V.S. Stepanyuk, A.L. Klavsyuk, L. Niebergall, W. Hergert, J. Kirschner, P. Bruno, Phys. Rev. B 70, 224419 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    R.A. Miron, K.A. Fichthorn, Phys. Rev. Lett. 93, 128301 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    K. Sastry, D.D. Johnson, D.E. Goldberg, P. Bellon, Phys. Rev. B 72, 085438 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    S.P. Ju, Y.C. Lo, S.J. Sun, J.G. Chang, J. Phys. Chem. B 109, 20805 (2005)CrossRefGoogle Scholar
  28. 28.
    V.S. Stepanyuk, D.I. Bazhanov, A.N. Baranov, W. Hergert, P.H. Dederichs, J. Kirschner, Phys. Rev. B 62, 15398 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    R.Z. Huang, V.S. Stepanyuk, A.L. Klavsyuk, W. Hergert, P. Bruno, J. Kirschner, Phys. Rev. B 73, 153404 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    D.V. Tsivlin, V.S. Stepanyuk, W. Hergert, J. Kirschner, Phys. Rev. B 68, 205411 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    J.A. Stroscio, D.M. Eigler, Science 254, 1319 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    A. Kühnle, G. Meyer, S.W. Hla, K.-H. Rieder, Surf. Sci. 499, 15 (2002)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Renzhong Huang
    • 1
    • 2
    Email author
  • Yusuning Sun
    • 1
  • Cuicui Du
    • 1
  • Tianfu Gao
    • 1
  • Yuxi Wu
    • 3
  • Valeris Stepanyuk
    • 2
  1. 1.College of Physics Science and TechnologyShenyang Normal UniversityShenyangP.R. China
  2. 2.Max-Planck-Institut für MikrostrukturphysikHalleGermany
  3. 3.Institute of Molecular Engineering and Applied ChemistryAnhui University of TechnologyMa’anshanP.R. China

Personalised recommendations