Pressure induced antiferromagnet-ferromagnet transition in La0.5Ba0.5CoO2.8 cobaltite

  • I.O. Troyanchuk
  • M.V. Bushinsky
  • V. Sikolenko
  • V. Efimov
  • C. Ritter
  • T. Hansen
  • D.M. Többens
Regular Article

Abstract

The anion deficient cobaltite La0.5Ba0.5CoO2.8 with the formal cobalt valence state close to 3+ has been studied as function of pressure up to 6.5 GPa at different temperatures by neutron powder diffraction. At ambient pressure the crystal structure of this compound has cubic symmetry (space group Pm3̅m) and is found to become antiferromagnetic with TN close to 250 K. Applied pressure induces a gradual transition from the antiferromagnetic into a ferromagnetic state through a mixed magnetic state. The transition is not accompanied by obvious changes in the macroscopic crystal symmetry. It is suggested that the magnetic ground state strongly depends on the unit cell volume and that the transition is associated with a spin state crossover of the cobalt ions whereas the formal Co3+/Co4+ ratio is less important than expected following the double exchange scenario for the appearance of ferromagnetism.

Keywords

Solid State and Materials 

References

  1. 1.
    J.B. Goodenough, J.S. Zhou, Structure and Bonding (Springer, New York, 2001), pp. 17–113Google Scholar
  2. 2.
    B. Raveau, M.M. Seikh, Cobalt Oxides: From Crystal Chemistry to Physics (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012), pp. 148–175Google Scholar
  3. 3.
    J. Wu, C. Leighton, Phys. Rev. B 67, 174408 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    P. Tong, J. Yu, Q. Huang, K. Yamada, D. Louca, Phys. Rev. Lett. 106, 156407 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    F. Fauth, E. Suard, V. Caignaert, Phys. Rev. B 65, 060401(R) (2001)CrossRefGoogle Scholar
  6. 6.
    T. Nakajima, M. Ichihara, Y. Ueda, J. Phys. Soc. Jpn 74, 1572 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    V. Sikolenko, V. Efimov, E. Efimova, A. Sazonov, C. Ritter, A. Kuzmin, I. Troyanchuk, J. Phys.: Condens. Matter 21, 436002 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    N. Sundaram, Y. Jiang, I.E. Anderson, D.P. Belanger, C.H. Booth, F. Bridges, J.F. Mitchell, T. Proffen, H. Zheng, Phys. Rev. Lett 102, 026401 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    I.O. Troyanchuk, D.V. Karpinsky, M.V. Bushinsky, V. Sikolenko, V. Efimov, A. Cervellino, B. Raveau, J. Appl. Phys. 112, 013916 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    V. Sikolenko, V. Efimov, I.O. Troyanchuk, D.V. Karpinsky, M.V. Bushinsky, D. Sheptyakov, J. Phys.: Conf. Ser. 391, 012106 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    E.L. Rautama, V. Caignaert, P. Boullay, A.K. Kundu, V. Pralong, M. Karppinen, C. Ritter, B. Raveau, Chem. Mater. 21, 102 (2009)CrossRefGoogle Scholar
  12. 12.
    I.O. Troyanchuk, D.V. Karpinsky, F. Yokaichiya, J. Phys.: Condens. Matter 20, 335228 (2008)CrossRefGoogle Scholar
  13. 13.
    I.O. Troyanchuk, M.V. Bushinsky, A.V. Nikitin, L.S. Lobanovsky, A.M. Balagurov, V. Sikolenko, V. Efimov, D.V. Sheptyakov, J. Appl. Phys. 113, 053909 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    T. Fujita et al., J. Phys. Soc. Jpn 73, 1987 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    I. Fita, R. Szymczak, R. Puzniak, I.O. Troyanchuk, J. Fink-Finowicki, Y.M. Mukovskii, V.N. Varyukhin, H. Szymczak, Phys. Rev. B 71, 214404 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    I. Fita, R. Szymczak, R. Puzniak, A. Wisniewski, I.O. Troyanchuk, D.V. Karpinsky, V. Markovich, H. Szymczak, Phys. Rev. B 83, 064414 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S. Zhang, Y. Zhang, L. Pi, S. Tan, J. Appl. Phys. 109, 07E131 (2011)CrossRefGoogle Scholar
  18. 18.
    D.M. Többens, N. Stüßer, K. Knorr, H.M. Mayer, G. Lampert, Mater. Sci. Forum 378-381, 288 (2001)CrossRefGoogle Scholar
  19. 19.
    T.C. Hansen, P.F. Henry, H.E. Fischer, J. Torregrossa, P. Convert, Meas. Sci. Technol. 19, 034001 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S. Klotz, T. Strässle, G. Rousse, G. Hamel, V. Pomjakushin, Appl. Phys. Lett. 86, 031917 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    J. Rodríguez-Carvajal, Physica B 192, 55 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    M. Itoh, Y. Nawata, T. Kiyama, D. Akahoshi, N. Fujiwara, Y. Ueda, Physica B 329, 751 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    P. Postorino, A. Congeduti, P. Dore, A. Sacchetti, F. Gorelli, L. Ulivi, A. Kumar, D.D. Sarma, Phys. Rev. Lett. 91, 175501 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    A. Sacchetti, P. Postorino, M. Capone, New J. Phys. 8, 3 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    D.P. Kozlenko, V.P. Glazkov, R.A. Sadykov, B.N. Savenko, V.I. Voronin, I.V. Medvedeva, J. Magn. Magn. Mater. 258, 290 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    J.S. Zhou, Y. Uwatoko, K. Matsubayashi, J.B. Goodenough, Phys. Rev. B 78, 220402 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    D. Fuchs, C. Pinta, T. Schwarz, P. Schweiss, P. Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, H.V. Löhneysen, Phys. Rev. B 75, 144402 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    D. Hammer, J. Wu, C. Leighton, Phys. Rev. B 69, 134407 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    D. Chernyshov, G. Rozenberg, E. Greenberg, E. Pomyakushina, V. Dmitriev, Phys. Rev. Lett. 103, 125501 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    P. Augustinský, V. Kařápek, J. Kuneš, arXiv:1302.4925v1 [cond-mat.str-el] (2013)Google Scholar
  31. 31.
    J. Kuneš, V. Kařápek, N. Parragh, G. Sangiovanni, A. Toschi, A.V. Kozhevnikov, Phys. Rev. Lett. 109, 117206 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Jiang, F. Bridges, N. Sundaram, D.P. Belanger, I.E. Anderson, J.F. Mitchell, H. Zheng, Phys. Rev. B 80, 144423 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    T. Vogt, J.A. Hriljac, N.C. Hyatt, P. Woodward, Phys. Rev. B 67, 140401 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    M.A. Korotin, S.Y. Ezhov, I.V. Solovyev, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, Phys. Rev. B 54, 5309 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    P. Tong, Q. Huang, M. Kofu, M.C. Lehman, J. Yu, D. Louca, J. Phys.: Conf. Ser. 251, 012015 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    D.P. Kozlenko, S.V. Trukhanov, E.V. Lukin, I.O. Troyanchuk, B.N. Savenko, Eur. Phys. J. B 58, 361 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    A. Chichev, M. Dlouhá, S. Vratislav, J. Hejtmánek, Z. Jirák, K. Knížek, M. Maryško, Z. Kristallogr. Suppl. 26, 435 (2007)CrossRefGoogle Scholar
  38. 38.
    J.L. García-Muñoz, C. Frontera, A.J. Barón-González, S. Valencia, J. Blasco, R. Feyerherm, E. Dudzik, R. Abrudan, F. Radu, Phys. Rev. B 84, 045104 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    F. Guillou, Q. Zhang, Z. Hu, C.Y. Kuo, Y.Y. Chin, H.J. Lin, C.T. Chen, A. Tanaka, L.H. Tjeng, V. Hardy, Phys. Rev. B 87, 115114 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    J.Q. Yan, J.S. Zhou, J.B. Goodenough, Phys. Rev. B 70, 014402 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    K. Oka et al., J. Am. Chem. Soc. 132, 9438 (2010)CrossRefGoogle Scholar
  42. 42.
    V.V. Platonov, Y.B. Kudasov, M.P. Monakhov, O.M. Tatsenko, Phys. Solid State 54, 279 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    K. Sato, A. Matsuo, K. Kindo, Y. Kobayashi, K. Asai, J. Phys. Soc. Jpn 78, 093702 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    M.M. Altarawneh et al., Phys. Rev. Lett. 109, 037201 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    V.V. Mehta, M. Liberati, F.J. Wong, R.V. Chopdekar, E. Arenholz, Y. Suzuki, J. Appl. Phys. 105, 07E503 (2009)CrossRefGoogle Scholar
  46. 46.
    M.R. Ibarra, R. Mahendiran, C. Marquina, B. García-Landa, J. Blasco, Phys. Rev. B 57, R3217 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    S. Hébert, A. Maignan, V. Hardy, C. Martin, M. Hervieu, B. Raveau, Solid State Commun. 122, 335 (2002)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • I.O. Troyanchuk
    • 1
  • M.V. Bushinsky
    • 1
  • V. Sikolenko
    • 2
  • V. Efimov
    • 3
  • C. Ritter
    • 4
  • T. Hansen
    • 4
  • D.M. Többens
    • 5
  1. 1.Scientific-Practical Materials Research Centre NAS of BelarusMinskBelarus
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Joint Institute for Nuclear ResearchDubnaRussia
  4. 4.Institut Laue-LangevinGrenoble Cedex 9France
  5. 5.Helmholtz-Zentrum BerlinBerlinGermany

Personalised recommendations