Advertisement

Magnetic annealing of the ion-beam sputtered IrMn/CoFeB bilayers – positive exchange bias and coercivity behaviour

  • M. RajuEmail author
  • Sujeet Chaudhary
  • D.K. Pandya
Regular Article

Abstract

The effect of optimum dilution of antiferromagnetic (AF)/ferromagnetic (FM) interface necessary for observance of positive exchange bias in ion-beam sputtered Si/Ir22Mn78 (t AF = 12, 18, 24 nm)/Co20Fe60B20(t FM = 6,9,15 nm) exchange coupled bilayers is investigated by magnetic annealing at 380, 420 and 460 °C for 1 h at 5 × 10-6 Torr in presence of 500 Oe magnetic field. While the coercivity of the exchange coupled FM layer decreases with the increase in annealing temperature irrespective of the value of t AF or t FM, the hysteresis loops however shift by ≈+ 10 Oe whenever the coercivity drops in the 10–15 Oe range. This is consistent with the phase diagram of exchange bias field and coercivity derived from Meiklejohn and Bean model. The X-ray diffraction and X-ray reflectivity measurements confirmed that the texture, grain size and interface roughness of IrMn/CoFeB bilayers are thickness dependent and are correlated to the observed magnetic response of the bilayers. The results establish that optimum dilution of the IrMn/CoFeB interface by thermally diffused Mn-spins is necessary in inducing the effective coupling between the IrMn domains and diluted CoFeB layer. It is further shown that the annealing temperature required for the optimum dilution of the CoFeB interface critically depends on the thickness of the layers.

Keywords

Solid State and Materials 

References

  1. 1.
    W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956) ADSCrossRefGoogle Scholar
  2. 2.
    W.H. Meiklejohn, C.P. Bean, Phys. Rev. 105, 904 (1957) ADSCrossRefGoogle Scholar
  3. 3.
    A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Li, T.X. Wang, H.Y. Liu, X.W. Xu, Z.M. Lu, Y.X. Li, Eur. Phys. J. B 66, 369 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    R.L. Stamps, J. Phys. D 33, R247 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    A. Maitre, D. Ledue, R. Patte, J. Magn. Magn. Mater. 324, 403 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    L. Wang, B. You, S.J. Yuan, J. Du, W.Q. Zou, A. Hu, S.M. Zhou, Phys. Rev. B 66, 184411 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    H. Fulara, M. Raju, S. Chaudhary, S.C. Kashyap, D.K. Pandya, in Technical Proceedings of the 2010 NSTI Nanotechnology Conference and Expo, Vol. 1, pp. 133–136Google Scholar
  9. 9.
    C. Leighton, J. Nogues, H. Suhl, I.K. Schuller, Phys. Rev. B 60, 12837 (1999) ADSCrossRefGoogle Scholar
  10. 10.
    J. Nogues, D. Lederman, T.J. Moran, I.K. Schuller, Phys. Rev. Lett. 76, 4624 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    J. Nogues, C. Leighton, I.K. Schuller, Phys. Rev. B 61, 1315 (2000) ADSCrossRefGoogle Scholar
  12. 12.
    D.Z. Yang, J. Du, L. Sun, X.S. Wu, X.X. Zhang, S.M. Zhou, Phys. Rev. B 71, 144417 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    B. Altuncevahir, A.R. Koymen, J. Magn. Magn. Mater. 261, 424 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    S.K. Mishra, F. Radu, H.A. Durr, W. Eberhardt, Phys. Rev. Lett. 102, 177208 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    H. Fulara, S. Chaudhary, S.C. Kashyap, D.K. Pandya, J. Appl. Phys. 110, 093916 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    H. Fulara, S. Chaudhary, S.C. Kashyap, D.K. Pandya, Nanosci. Nanotechnol. Lett. 4, 651 (2012)CrossRefGoogle Scholar
  17. 17.
    J. van Driel, F.R. de Boer, K.-M.H. Lenssen, R. Coehoorn, J. Appl. Phys. 88, 975 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    K. O’Grady, L.E. Fernandez-Outon, G. Vallejo-Fernandez, J. Magn. Magn. Mater. 322, 883 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    A. Sakuma, K. Fukamichi, K. Sasao, R.Y. Umetsu, Phys. Rev. B 67, 224420 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    J. Yang, S. Cardoso, P.P. Freitas, T. Devolder, M. Ruehrig, Appl. Phys. Lett. 97, 132502 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    J. Hayakawa, S. Ikeda, Y.M. Lee, F. Matsukura, H. Ohno, Appl. Phys. Lett. 89, 232510 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    Y.M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, H. Ohno, Appl. Phys. Lett. 89, 042506 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    S. Ikeda J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, H. Ohno, Appl. Phys. Lett. 93, 082508 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    Y.M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, H. Ohno, Appl. Phys. Lett. 90, 212507 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    M. Kodzuka, T. Ohkubo, K. Hono, S. Ikeda, H.D. Gan, H. Ohno, J. Appl. Phys. 111, 043913 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    N.P. Aley, K. O’Grady, J. Appl. Phys. 109, 07D719 (2011) CrossRefGoogle Scholar
  27. 27.
    M. Tsunoda, K. Imakita, M. Naka, M. Takahashi, J. Magn. Magn. Mater. 304, 59 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    H. Fulara, S. Chaudhary, S.C. Kashyap, J. Appl. Phys. 113, 043914 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    H. Fulara, S. Chaudhary, S.C. Kashyap, Appl. Phys. Lett. 101, 142408 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    M. Raju, S. Chaudhary, D.K. Pandya, Appl. Phys. Lett. 98, 212506 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    M. Raju, S. Chaudhary, D.K. Pandya, J. Magn. Magn. Mater. 332, 109 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    Braj Bhusan Singh, S. Chaudhary, J. Appl. Phys. 112, 063906 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    J. Spray, U. Nowak, J. Phys. D 39, 4536 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    K.D. Usadel, R.L. Stamps, Phys. Rev. B 82, 094432 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    X.L. Tang, H. Wu Zhang, H. Su, Y.L. Jing, Z. Yong Zhong, Phys. Rev. B 81, 052401 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    G. Scholten, K.D. Usadel, U. Nowak, Phys. Rev. B 71, 064413 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    C. Leighton, J. Nogues, B.J. Jonsson-Akerman, I.K. Schuller, Phys. Rev. Lett. 84, 3466 (2000) ADSCrossRefGoogle Scholar
  38. 38.
    O. Rader, W. Gudat, D. Schmitz, C. Carbone, W. Eberhardt, Phys. Rev. B 56, 5053 (1997) ADSCrossRefGoogle Scholar
  39. 39.
    S. Bouarab, H. Nait-Laziz, M.A. Khan, C. Demangeat, H. Dreyssé, M. Benakki, Phys. Rev. B 52, 10127 (1995) ADSCrossRefGoogle Scholar
  40. 40.
    H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A.T. Young, M. Carey, J. Stohr, Phys. Rev. Lett. 91, 017203 (2003) ADSCrossRefGoogle Scholar
  41. 41.
    L. Wang, B. You, S.J. Yuan, J. Du, W.Q. Zou, A. Hu, S.M. Zhou, Phys. Rev. B66 , 184411 (2002)Google Scholar
  42. 42.
    Handbook of Spin Transport and Magnetism, edited by E.Y. Tsymbal, I. Zutic (CRC press, Taylor & Francis group, Boca Raton, 2012), pp. 40–41 Google Scholar
  43. 43.
    H. Xi, R.M. White, Phys. Rev. B 61, 80 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    D.D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, K. Ando, Appl. Phys. Lett. 86, 092502 (2005) ADSCrossRefGoogle Scholar
  45. 45.
    W.G. Wang, J. Jordan-sweet, G.X. Miao, C. Ni, A.K. Rumaiz, L.R. Shah, X. Fan, P. Parsons, R. Stearrett, E.R. Nowak, J.S. Moodera, J.Q. Xiao, Appl. Phys. Lett. 95, 242501 (2009) ADSCrossRefGoogle Scholar
  46. 46.
    R.M. Oksuzoglu, M. Yıldırım, H. Cınar, E. Hildebrandt, L. Alff, J. Magn. Magn. Mater. 323, 1827 (2011) ADSCrossRefGoogle Scholar
  47. 47.
    J. Geshev, T. Dias, S. Nicolodi, R. Cichelero, A. Harres, J.J.S. Acuna, L.G. Pereira, J.E. Schmidt, C. Deranlot, F. Petroff, J. Phys. D 44, 095002 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Thin Film Laboratory, Department of Physics, Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations