Thermodynamic properties of an electron gas on a curved surface

  • F.F. BatistaJr.
  • G.A. Farias
  • N.S. AlmeidaEmail author
Regular Article


We report a study on thermodynamic properties of a two-dimensional electron gas confined in a sector of a circular cylinder immersed in a dc magnetic field perpendicular to its axis. This field configuration produces on the electrons in the curved surface, effects similar to a non-homogeneous magnetic field on a flat system. We study these effects by calculating the energy spectra for different curvature radius and symmetries of the magnetic field with respect to the surface. The analysis of the density of states, chemical potential and specific heat of these systems helps to understand the correlation between the externally controlled symmetry and their physical properties.


Mesoscopic and Nanoscale Systems 


  1. 1.
    H. Aoki, H. Suezawa, Phys. Rev. A 46, R1163 (1992) ADSCrossRefGoogle Scholar
  2. 2.
    G.Y. Chen, B. Jensen, V. Stolojan, S.R.P. Silva, Carbon 49, 280 (2011) CrossRefGoogle Scholar
  3. 3.
    M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, Nano Lett. 2, 87 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    K.-J. Friedland, R. Hey, H. Kostial, A. Riedel, K.H. Ploog, Phys. Rev. B 75, 045347 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    G. Cuoghi, G. Ferrari, A. Bertoni, Phys. Rev. B 79, 073410 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    K.-J. Friedland, A. Siddiki, R. Hey, H. Kostial, A. Riedel, D.K. Maude, Phys. Rev. B 79, 125320 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    A. Marchi, S. Reggiani, M. Rudan, A. Bertoni, Phys. Rev. B 72, 035403 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    M. Trushin, J. Schliemann, New J. Phys. 9, 346 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    G. Ferrari, A. Bertoni, G. Goldoni, E. Molinari, Physica E 40, 2040 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    G. Ferrari, A. Bertoni, G. Goldoni, E. Molinari, Phys. Rev. B 78, 115326 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    A. Lorke, S. Böhm, W. Wegscheider, Superlattices Microstruct. 33, 347 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    N. Shaji, H. Qin, R.H. Blick, L.J. Klein, C. Deneke, O.G. Schmidt, Appl. Phys. Lett. 90, 042101 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    A.V. Chaplik, L.I. Magarill, D.A. Romanov, Physica B 249-251, 377 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    R.C.T. da Costa, Phys. Rev. A 23, 1982 (1981) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    G. Ferrari, G. Cuoghi, Phys. Rev. Lett. 100, 230403 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    I.S. Gradshteyn, Table of Integrals, Series and Products, 7th edn. (Elsevier, Academic Press, California, 2007) Google Scholar
  17. 17.
    V. Mitin, V. Kochelap, M. Stroscio, Quantum Heterostructures (Cambridge University Press, Cambridge, 1999) Google Scholar
  18. 18.
    H. Aoki, T. Ando, Solid State Commun. 38, 1079 (1981) ADSCrossRefGoogle Scholar
  19. 19.
    R.E. Prange, Phys. Rev. B 23, 4802 (1981) ADSCrossRefGoogle Scholar
  20. 20.
    K. Huang, Statistical Mechanics (John Wiley and Sons, New York, 1987) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de Física, Universidade do Estado do Rio Grande do NorteMossoróBrazil

Personalised recommendations