Influence of intradot Coulomb correlations on the Andreev reflection in a ferromagnetic metal/quantum dot/superconductor hybrid junction

Regular Article

Abstract

Spin-dependent tunneling through a quantum dot coupled to one ferromagnetic and one superconducting electrodes is studied in the Andreev reflection (AR) regime. Electrical conductance is calculated within the nonequilibrium Green function technique. Features of the AR current involved by the intradot Coulomb correlations (or the dot’s charging energy U) and in the presence of the Zeeman splitting of the dot discrete level are analyzed in both linear and nonlinear transport regimes. A new interference effect due to AR is predicted to appear in the case of a weak on-dot repulsion. Strong Coulomb correlations studied in nonequilibrium situation revealed significant modifications of the AR differential conductance occurring only in case of spin-polarized transmission. Origin of a variety of the multipeak structure of the conductance for the system with the interacting quantum dot, as well as the conditions for the perfect U-dependent AR transmission are also discussed.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    A.F. Andreev, J. Exp. Theor. Phys. 19, 1228 (1964)Google Scholar
  2. 2.
    R.J. Soulen Jr., J.M. Byers, M.S. Osofsky, N. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M.D. Coey, Science 282, 85 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    M.S. Osofsky, B. Nadgorny, R.J. Soulen, G. Trotter, P. Broussard, W. Desisto, G. Laprade, Y.M. Mukovskii, A. Arsenov, Physica C 341-348, 1527 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    G. Deutscher, D. Feinberg, Appl. Phys. Lett. 36, 487 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    M.J.M. de Jong, C.W.J. Beenakker, Phys. Rev. Lett. 74, 1657 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    K. Kang, Phys. Rev. B 57, 11891 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    C.J. Lambert, R. Raimondi, J. Phys.: Condens. Matter 10, 901 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    T. Löfwander, V.S. Shumeiko, G. Wendin, Supercond. Sci. Technol. 14, R53 (1998)CrossRefGoogle Scholar
  9. 9.
    S.K. Upadhyay, A. Palanisami, R.N. Louie, R.A. Buhrman, Phys. Rev. Lett. 81, 3247 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    G.J. Strijkers, Y. Ji, F.Y. Yang, C.L. Chien, J.M. Byers, A. Anguelouch, G. Xiao, A. Gupta, Phys. Rev. B 63, 104510 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Ji, G.J. Strijkers, F.Y. Yang, C.L. Chien, J.M. Byers, A. Anguelouch, G. Xiao, A. Gupta, Phys. Rev. Lett. 86, 5585 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    C.H. Kant, O. Kurnosikov, A.T. Filip, P. Leclair, H.J.M. Swagten, Phys. Rev. B 66, 212403 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    P. Raychaudhuri, A.P. Mackenzie, J.W. Reiner, M.R. Beasley, Phys. Rev. B 67, 020411 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    M. Krawiec, K.I. Wysokiński, Supercond. Sci. Technol. 17, 103 (2003)CrossRefGoogle Scholar
  15. 15.
    M.R. Buitelaar, W. Belzig, T. Nussbaumer, B. Babić, C. Bruder, C. Schönenberger, Phys. Rev. Lett. 91, 057005 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    S. Maekawa, J. Magn. Magn. Mater. 272-276, e1459 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Li, H. Choi, H. Lee, J. Liu, J. Appl. Phys. 101, 103918 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    T. Domański, A. Donabidowicz, K.I. Wysokiński, Phys. Rev. B 78, 144515 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Y.-J. Doh, S. De Franceschi, E.P.A.M. Bakkers, L.P. Kouwenhoven, Nano Lett. 8, 4098 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S. De Franceschi, L. Kouwenhoven, Ch. Shönenberger, W. Wernsdorfer, Nature Nanotechnol. 5, 703 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Zhu, Q.-F. Sun, T.-H. Lin, Phys. Rev. B 65, 024516 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    J.-F. Feng, S.-J. Xiong, Phys. Rev. B 67, 045316 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    X. Cao, Y. Shi, X. Song, S. Zhou, Phys. Rev. B 70, 235341 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    P. Zhang, Y.-X. Li, J. Phys.: Condens. Matter 21, 095602 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Y.-X. Li, H.-Y. Choi, H.-W. Lee, J.-J. Liu, J. Appl. Phys. 101, 103918 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    E.C. Siqueira, G.G. Cabrera, Phys. Rev. B 81, 094526 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    K. Bocian, W. Rudziński, J. Barnaś, Acta Physica Polonica A 121, 1201 (2012)Google Scholar
  28. 28.
    K. Bocian, W. Rudziński, Eur. Phys. J. Web Conf. 40, 10002 (2013)CrossRefGoogle Scholar
  29. 29.
    Z.Y. Zeng, Baowen Li, F. Claro, Phys. Rev. B 68, 115319 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    J. Hubbard, Proc. Roy. Soc. A281, 401 (1964)ADSCrossRefGoogle Scholar
  31. 31.
    A.V. Rozhkov, A.L. Rakhmanov, Physica C 470, 998 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    H. Haug, A-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, Berlin, 1996)Google Scholar
  33. 33.
    D.N. Zubarev, Sov. Phys. Usp. 3, 320 (1960)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Physics, Adam Mickiewicz UniversityPoznańPoland

Personalised recommendations