The European Physical Journal B

, 86:377

Nonlocal failures in complex supply networks by single link additions

Regular Article

Abstract

How do local topological changes affect the global operation and stability of complex supply networks? Studying supply networks on various levels of abstraction, we demonstrate that and how adding new links may not only promote but also degrade stable operation of a network. Intriguingly, the resulting overloads may emerge remotely from where such a link is added, thus resulting in nonlocal failures. We link this counter-intuitive phenomenon to Braess’ paradox originally discovered in traffic networks. We use elementary network topologies to explain its underlying mechanism for different types of supply networks and find that it generically occurs across these systems. As an important consequence, upgrading supply networks such as communication networks, biological supply networks or power grids requires particular care because even adding only single connections may destabilize normal network operation and induce disturbances remotely from the location of structural change and even global cascades of failures.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    E. Katifori, G.J. Szöllősi, M.O. Magnasco, Phys. Rev. Lett. 104, 048704 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    R. Albert, H. Jeong, A. Barabási, Nature 406, 378 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994)Google Scholar
  4. 4.
    M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, W. D’haeseleer, Energy Policy 33, 787 (2005)CrossRefGoogle Scholar
  6. 6.
    J. Carrasco, L. Franquelo, J. Bialasiewicz, E. Galvan, R. Guisado, M. Prats, J. Leon, N. Moreno-Alfonso, IEEE Trans. Ind. Electron. 53, 1002 (2006) CrossRefGoogle Scholar
  7. 7.
    F. Blaabjerg, R. Teodorescu, M. Liserre, A. Timbus, IEEE Trans. Ind. Electron. 53, 1398 (2006) CrossRefGoogle Scholar
  8. 8.
    E. Marris, Nature 454, 570 (2008) CrossRefGoogle Scholar
  9. 9.
    A.E. Motter, Y.C. Lai, Phys. Rev. E 66, 065102 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    M. Schäfer, J. Scholz, M. Greiner, Phys. Rev. Lett. 96, 108701 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    I.Z. Kiss, C.G. Rusin, H. Kori, J.L. Hudson, Science 316, 1886 (2007) MathSciNetADSCrossRefMATHGoogle Scholar
  12. 12.
    I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Phys. Rev. Lett. 100, 218701 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    T. Nishikawa, A.E. Motter, Proc. Natl. Acad. Sci. 107, 10342 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    A. Vespignani, Nat. Phys. 8, 32 (2011)CrossRefGoogle Scholar
  16. 16.
    R. Parshani, S.V. Buldyrev, S. Havlin, Proc. Natl. Acad. Sci. 108, 1007 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nat. Phys. 9, 89 (2013)CrossRefGoogle Scholar
  18. 18.
    Union for the Coordination of Transmission of Electricity, Final report on the system disturbance on 4 november 2006, http://www.entsoe.eu/˜library/publications/ce/otherreports/Final-Report-20070130.pdf (retrieved 13/10/2009) (2007)
  19. 19.
    D. Braess, Unternehmensforschung 12, 258 (1968)MathSciNetMATHGoogle Scholar
  20. 20.
    D. Braess, A. Nagurney, T. Wakolbinger, Transportation Science 39, 446 (2005)CrossRefGoogle Scholar
  21. 21.
    J.E. Cohen, P. Horowitz, Nature 352, 699 (1991) ADSCrossRefGoogle Scholar
  22. 22.
    T. Roughgarden, E. Tardos, J. ACM 49, 236 (2002)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Blumsack, L.B. Lave, M. Ilic, The Energy Journal 28, 73 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Youn, M.T. Gastner, H. Jeong, Phys. Rev. Lett. 101, 128701 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    G. Valiant, T. Roughgarden, Random Structures and Algorithms 37, 495 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    J.G. Wardrop, Proc. Inst. Civ. Eng. 1, 325 (1952)Google Scholar
  27. 27.
    M.J. Beckmann, C.B. McGuire, C.B. Winsten, Studies in the Economics of Transportation (Yale University Press, New Haven, 1956)Google Scholar
  28. 28.
    G. Filatrella, A.H. Nielsen, N.F. Pedersen, Eur. Phys. J. B 61, 485 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    D. Witthaut, M. Timme, New J. Phys. 14, 083036 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    A. Nagurney, Europhys. Lett. 91, 48002 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    J. Grainger, W. Stevenson, Power System Analysis (McGraw-Hill, New York, 1994)Google Scholar
  32. 32.
    F. Dörfler, M. Chertkov, F. Bullo, Proc. Natl. Acad. Sci. 110, 2005 (2013) ADSCrossRefGoogle Scholar
  33. 33.
    D. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  34. 34.
    J.M. Kleinberg, Nature 406, 845 (2000) ADSCrossRefGoogle Scholar
  35. 35.
    A.L. Barabási, R. Albert, Science 286, 509 (1999) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    S.H. Strogatz, Nature 410, 268 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    A. Barrat, M. Barthlemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. 101, 3747 (2004) ADSCrossRefGoogle Scholar
  38. 38.
    C.M. Schneider, A.A. Moreira, J.S. Andrade, S. Havlin, H.J. Herrmann, Proc. Natl. Acad. Sci. 108, 3838 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    B. Wollenberg, A. Wood, Power Generation, Operation, and Control (John Wiley & Sons, New York, 1996) Google Scholar
  40. 40.
    K. Schmietendorf, J. Peinke, R. Friedrich, O. Kamps, arXiv:1307.2748 (2013)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS)GöttingenGermany
  2. 2.Institute for Nonlinear Dynamics, Faculty of Physics, University of GöttingenGöttingenGermany

Personalised recommendations