Structural and electronic properties of BeO nanotubes filled with Cu nanowires

Regular Article

Abstract

The structural and electronic properties of Cu5-1 and Cu6-1 nanowires with core-shell structures encapsulated inside a series zigzag (n,0) BeONTs denoted by Cu5-1@(n,0) and Cu6-1@(n,0) are investigated using the first-principles calculations within the generalized-gradient approximation. For Cu5-1@(n,0) (10 ⩽ n ⩽ 17) and Cu6-1@(n,0) (11 ⩽ n ⩽ 18) combined systems, the initial shapes (cylindrical BeONTs and CuNWs) are preserved without any visible change after optimization. The quantum conductances 5G0 and 6G0 of the most stable Cu5-1@(12,0) and Cu6-1@(13,0) combined systems are identical to the corresponding free-standing Cu5-1 and Cu6-1 nanowires, respectively. The energy bands crossing the Fermi level in both the Cu5-1@(12,0) and Cu6-1@(13,0) combined systems are all originated from the inner CuNWs. Therefore the electron transport will occur only through the inner CuNWs and the outer inert BeONTs serves well as an insulating cable sheath. The robust quantum conductance of the Cu5-1 and Cu6-1 nanowires, the insulating protection character of the (12,0) and (13,0) BeONTs and the highest stability of the tube-wire combined systems make the Cu5-1@(12,0) and Cu6-1@(13,0) combined systems are top-priority in the ULSI circuits and MEMS devices that demand steady transport of electrons.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    H.P. Li, N.Q. Zhao, C.N. He, C.S. Shi, X.W. Du, J.J. Li, Alloys Compd. 465, 51 (2008)CrossRefGoogle Scholar
  2. 2.
    V.V. Ivanovskaya, C. Köhler, G. Seifert, Phys. Rev. B 75, 075410 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    J.C. González, V. Rodrigues, J. Bettini, L.G.C. Rego, A.R. Rocha, P.Z. Coura, S.O. Dantas, F. Sato, D.S. Galvão, D. Ugarte, Phys. Rev. Lett. 93, 126103 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    V.K. Sutrakar, D.R. Mahapatra, Nanotechnology 20, 045701 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Kondo, K. Takayanagi, Science 289, 606 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    C.Z. Li, H.X. He, A. Bogozi, J.S. Bunch, N. Tao, J. Appl. Phys. Lett. 76, 1333 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    H. Ohnishi, Y. Kondo, K. Takayanagi, Nature 395, 780 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    A.I. Yanson, G.R. Bollinger, H.E. van den Brom, N. Agrait, J.M. van Ruitenbeek, Nature 395, 783 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, Nature 372, 159 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    S.C. Tsang, P.J.F. Harris, M.L.H. Green, Nature 362, 520 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    D. Golberg, P.M.F.J. Costa, M. Mitome, S. Hampel, D. Haase, C. Mueller, A. Leonhardt, Y. Bando, Adv. Mater. 19, 1937 (2007)CrossRefGoogle Scholar
  12. 12.
    B. Deng, A.W. Xu, G.Y. Chen, R.Q. Song, L.P. Chen, J. Phys. Chem. B 110, 11711 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Guo, Y. Kong, W. Guo, H. Gao, J. Comput. Theor. Nanosci. 1, 93 (2004)Google Scholar
  14. 14.
    X.J. Du, J.M. Zhang, S.F. Wang, K.W. Xu, V. Ji, Eur. Phys. J. B 72, 119 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    X.J. Du, Z. Chen, J. Zhang, C.S. Yao, C. Chen, X.L. Fan, Phys. Stat. Sol. B 249, 1033 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J.J. Zhao, A. Buldum, J. Han, J.P. Liu, Nanotechnology 13, 195 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    R. Tenne, Chem. Eur. J. 8, 5297 (2002)CrossRefGoogle Scholar
  18. 18.
    C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)CrossRefGoogle Scholar
  19. 19.
    J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.J. Choi, P. Yang, Nature 422, 599 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    A.N. Enyashin, G. Seifert, A.L. Ivanovskii, JETP Lett. 80, 608 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    L.A. Chernozatonskii, V.I. Artyukhov, P.B. Sorokin, Phys. Rev. B 74, 045402 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    P.B. Sorokin, A.S. Fedorov, L.A. Chernozatonskii, Phys. Solid State 48, 398 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    G.Y. Zhang, E.G. Wang, Appl. Phys. Lett. 82, 1926 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    R.Z. Ma, Y. Bando, T. Sato, Chem. Phys. Lett. 350, 1 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    D. Golberg, Y. Bando, K. Kurashima, T. Sato, J. Nanosci. Nanotechnol. 1, 49 (2001)CrossRefGoogle Scholar
  26. 26.
    D. Golberg, F.F. Xu, Y. Bando, Appl. Phys. A 76, 479 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    C.C. Tang, Y. Bando, D. Golberg, X.X. Ding, S.R. Qi, J. Phys. Chem. B 107, 6539 (2003)CrossRefGoogle Scholar
  28. 28.
    W.Q. Han, C.W. Chang, A. Zettl, Nano Lett. 4, 1355 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  31. 31.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 17585 (1999)Google Scholar
  33. 33.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)Google Scholar
  36. 36.
    A. Soon, M. Todorova, B. Delley, C. Stampfl, Phys. Rev. B 73, 165424 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    B.L. Wang, J.J. Zhao, X.S. Chen, D. Shi, G.H. Wang, Nanotechnology 17, 3178 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    P. Sen, O. Gülseren, T. Yildirim, I.P. Batra, S. Ciraci, Phys. Rev. B 65, 235433 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    L.C. Ma, J.M. Zhang, K.W. Xu, Physica B 410, 105 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    J.W. Zhu, D.N. Shi, J.J. Zhao, B.L. Wang, Nanotechnology 21, 185703 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    K.M. Alam, A.K. Ray, Phys. Rev. B 77, 035436 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    B. Baumeier, P. Krüger, J. Pollmann, Phys. Rev. B 76, 085407 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    H. Xu, F. Zhan, A.L. Rosa, Th. Frauenheim, R.Q. Zhang, Solid State Commun. 148, 534 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    P.B. Sorokin, A.S. Fedorov, L.A. Chernozatonski, Phys. Solid State 48, 398 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    J.J. Zhao, C. Buia, J. Han, J.P. Lu, Nanotechnology 14, 501 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    A.I. Mares, J.M.V. Ruitenbeek, Phys. Rev. B 72, 205402 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.College of Physics and Information TechnologyShaanxi Normal UniversityXianShaanxi, P.R. China
  2. 2.Department of Medical Engineering and TechnologyXinjiang Medical UniversityUrumqiXinjiang, P.R. China
  3. 3.College of Physics and Mechanical and Electronic EngineeringXian University of Arts and ScienceXianShaanxi, P.R. China
  4. 4.ICMMO/LEMHEUniversité Paris-Sud 11Orsay CedexFrance

Personalised recommendations