Advertisement

Magnetic ordering of spin systems having fractal dimensions Experimental study

  • T. NaitoEmail author
  • H. Yamamoto
  • K. Okuda
  • K. Konishi
  • H. Mayama
  • D. Yamaguchi
  • S. Koizumi
  • K. Kubo
  • T. Nakamura
Regular Article

Abstract

It is well-known that cooperative properties such as magnetic ordering can depend on the samples’ dimensions (Ds) in a qualitative way. However, there have been no samples with well-defined non-integer Ds. The dimension of a given sample has been always discussed on the anisotropy of the electronic/crystal/magnetic structures, which has no definition suitable for quantitative discussion on dimensions vs. properties. On the other hand a particular type of porous samples, i.e. fractal bodies, can have well-defined non-integer Ds dependent exclusively on the geometrical feature of structures, and physical properties of such materials remains unexplored. This paper reports on magnetic ordering in samples covering 2.5 ≤ D ≤ 3, in addition to a way of precise control of the fractal dimensions of given samples simply by wax (alkylketene dimer). The results show that the magnetic ordering temperatures, i.e. Néel temperatures (T N s), of CoO depend on D, and rapidly enhance immediately below D = 3. This means that one can control or enhance the critical temperature simply by tuning D with keeping the remaining magnetic properties unchanged.

Keywords

Solid State and Materials 

Supplementary material

References

  1. 1.
    G. Saito, Y. Yoshida, Bull. Chem. Soc. Jpn 80, 1 (2007) CrossRefGoogle Scholar
  2. 2.
    J. Gao, H. Gu, B. Xu, Acc. Chem. Res. 42, 1097 (2009) CrossRefGoogle Scholar
  3. 3.
    W.Y. Kim, Y.C. Choi, K.S. Kim, J. Mater. Chem. 18, 4510 (2008) CrossRefGoogle Scholar
  4. 4.
    B.Z. Jang, A. Zhamu, J. Mater. Sci. 43, 5092 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    M.J. Benitez, O. Petracic, E.L. Salabas, F. Radu, H. Tüysüz, F. Schüth, H. Zabel, Phys. Rev. Lett. 101, 097206 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    B.D. Terris, T. Thomson, J. Phys. D 38, R199 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005) CrossRefGoogle Scholar
  8. 8.
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1977) Google Scholar
  9. 9.
    A. Bielanski, Z. Kluz, M. Jagiello, I. Waclawska, Z. Phys. Chem. 97, 207 (1975) CrossRefGoogle Scholar
  10. 10.
    D. Markovic, V. Kusigerski, V. Spasojevic, J. Blanusa, B. Antic, R. Tellgren, V. Srdanov, J. Magn. Magn. Mater. 272-276, 1390 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    S.R. Mishra, I. Dubenko, J. Losby, I.K. Ghosh, M. Khan, N. Ali, J. Nanosci. Nanotechnol. 5, 2076 (2005) CrossRefGoogle Scholar
  12. 12.
    J.W. Essam, in Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green (Academic, London, 1972), Vol. 2, Chap. 6, pp. 197–270 Google Scholar
  13. 13.
    F. Scholl, K. Binder, Z. Phys. B 39, 239 (1980) ADSCrossRefGoogle Scholar
  14. 14.
    D. Stauffer, A. Amnon, Introduction to percolation theory, 2nd edn. (Taylor & Francis, Washington, DC, 1992), Chap. 2, pp. 43–53, and Chap. 7, pp. 137–149 Google Scholar
  15. 15.
    H. Mayama, K. Tsujii, J. Chem. Phys. 125, 124706 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    D. Yamaguchi, H. Mayama, S. Koizumi, K. Tsujii, T. Hashimoto, Eur. Phys. J. B 63, 153 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    H. Mayama, T. Naito, Physica E 41, 1878 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    R.M. White, Quantum Theory of Magnetism (Springer, Berlin, 2007), p. 150 Google Scholar
  19. 19.
    T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir 12, 2125 (1996) CrossRefGoogle Scholar
  20. 20.
    T. Minami, H. Mayama, S. Nakamura, S. Yokojima, J.-W. Shen, K. Tsujii, Soft Matter 4, 140 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    H. Mayama, Soft Matter 5, 856 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    Ch. Kant, T. Rudolf, F. Schrettle, F. Mayr, J. Deisenhofer, P. Lunkenheimer, M.V. Eremin, A. Loidl, Phys. Rev. B 78, 245103 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    J.R. Singer, Phys. Rev. 104, 929 (1956) ADSCrossRefGoogle Scholar
  24. 24.
    K. Tomiyasu, T. Inami, N. Ikeda, Phys. Rev. B 70, 184411 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    W. Jauch, M. Reehuis, H.J. Bleif, F. Kubanek, P. Pattison, Phys. Rev. B 64, 052102 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    M.D. Rectin, B.L. Averbach, Phys. Rev. B 5, 2693 (1972) ADSCrossRefGoogle Scholar
  27. 27.
    A. Tozri, E. Dhahri, E.K. Hlil, M.A. Valente, Solid State Commun. 151, 315 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    L. Néel, in Low Temperature Physics, edited by C. Dewitt, B. Dreyfus, P.G. de Gennes (Gordon and Breach, New York, 1962), p. 413 Google Scholar
  29. 29.
    D. Walsh, S.C. Wimbush, S.R. Hall, Chem. Mater. 19, 647 (2007) CrossRefGoogle Scholar
  30. 30.
    D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, S. Mann, Nat. Mater. 2, 386 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    S.R. Hall, Adv. Mater. 18, 487 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. Naito
    • 1
    Email author
  • H. Yamamoto
    • 1
  • K. Okuda
    • 1
  • K. Konishi
    • 1
  • H. Mayama
    • 2
  • D. Yamaguchi
    • 3
  • S. Koizumi
    • 3
  • K. Kubo
    • 2
  • T. Nakamura
    • 2
  1. 1.Graduate School of Science and Engineering, Ehime UniversityEhimeJapan
  2. 2.Research Institute for Electronic Science, Hokkaido UniversityHokkaidoJapan
  3. 3.Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, NakaIbarakiJapan

Personalised recommendations