Advertisement

Application of hierarchical equations of motion (HEOM) to time dependent quantum transport at zero and finite temperatures

  • Heng Tian
  • GuanHua ChenEmail author
Regular Article

Abstract

Going beyond the limitations of our earlier works [X. Zheng, F. Wang, C.Y. Yam, Y. Mo, G.H. Chen, Phys. Rev. B 75, 195127 (2007); X. Zheng, G.H. Chen, Y. Mo, S.K. Koo, H. Tian, C.Y. Yam, Y.J. Yan, J. Chem. Phys. 133, 114101 (2010)], we propose, in this manuscript, a new alternative approach to simulate time-dependent quantum transport phenomenon from first-principles. This new practical approach, still retaining the formal exactness of HEOM framework, does not rely on any intractable parametrization scheme and the pole structure of Fermi distribution function, thus, can seamlessly incorporated into first-principles simulation and treat transient response of an open electronic systems to an external bias voltage at both zero and finite temperatures on the equal footing. The salient feature of this approach is surveyed, and its time complexity is analysed. As a proof-of-principle of this approach, simulation of the transient current of one dimensional tight-binding chain, driven by some direct external voltages, is demonstrated.

Keywords

Computational Methods 

References

  1. 1.
    J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    Y.Q. Xue, S. Datta, M.A. Ratner, Chem. Phys. 281, 151 (2002) CrossRefADSGoogle Scholar
  4. 4.
    X. Zheng, F. Wang, C.Y. Yam, Y. Mo, G.H. Chen, Phys. Rev. B 75, 195127 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  6. 6.
    X. Zheng, G.H. Chen, Y. Mo, S.K. Koo, H. Tian, C.Y. Yam, Y.J. Yan, J. Chem. Phys. 133, 114101 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    H. Tian, Ph.D. thesis, University of Hong Kong, 2012 Google Scholar
  8. 8.
    J.S. Jin, X. Zheng, Y.J. Yan, J. Chem. Phys. 128, 234703 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    A. Croy, U. Saalmann, Phys. Rev. B 80, 245311 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    T. Ozaki, Phys. Rev. B 75, 035123 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    J. Hu, R.X. Xu, Y.J. Yan, J. Chem. Phys. 133, 101106 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    A.-P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994) ADSCrossRefGoogle Scholar
  13. 13.
    M. Cini, Phys. Rev. B 22, 5887 (1980) ADSCrossRefGoogle Scholar
  14. 14.
    A. Iserles, IMA J. Numer. Anal. 24, 365 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    N.S. Bakhvalov, L.G. Vasileva, USSR Comput. Math. Math. Phys. 8, 241 (1968) CrossRefGoogle Scholar
  16. 16.
    T.N.L. Patterson, Numer. Math. 27, 41 (1976) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    J.C. Mason, D.C. Handscomb, Chebyshev Polynomials (Chapman & Hall/CRC, 2003) Google Scholar
  18. 18.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965) Google Scholar
  19. 19.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many-particle Systems (Dover, New York, 2003) Google Scholar
  20. 20.
    R. Kubo, J. Phys. Soc. Jpn 12, 570 (1957) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959)MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    H. Bruus, K. Flensberg, Many-body Quantum Theory in Condensed Matter Physics: an introduction (Oxford University Press, 2004) Google Scholar
  23. 23.
    C. Kittel, Introduction to Solid State Physics (Wiley, New Jersey, 2005) Google Scholar
  24. 24.
    I. Appelbaum, T. Wang, J.D. Joannopoulos, V. Narayanamurti, Phys. Rev. B 69, 165301 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    E.N. Economou, Green’s Functions in Quantum Physics (Springer-Verlag, New York, 2006) Google Scholar
  26. 26.
    W. Gautschi, Numer. Algorithms 63, 369 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    H. Tian, unpublishedGoogle Scholar
  28. 28.
    M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993) ADSCrossRefGoogle Scholar
  29. 29.
    S.G. Chen, H. Xie, Y. Zhang, X.D. Cui, G.H. Chen, Nanoscale 5, 169 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    H. Tian, G.H. Chen, J. Chem. Phys. 137, 204114 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ChemistryThe University of Hong KongHong KongP.R. China
  2. 2.Department of PhysicsThe University of Hong KongHong KongP.R. China
  3. 3.Centre for Theoretical and Computational Physics, The University of Hong KongHong KongP.R. China

Personalised recommendations