Advertisement

Gauge-invariant and current-continuous microscopic ac quantum transport theory

  • JianQiao Zhang
  • ZhenYu Yin
  • Xiao Zheng
  • ChiYung Yam
  • GuanHua ChenEmail author
Regular Article

Abstract

There had been consensus on what the accurate ac quantum transport theory was until some recent works challenged the conventional wisdom. Basing on the non-equilibrium Green’s function formalism for time-dependent quantum transport, we derive an expression for the dynamic admittance that satisfies gauge invariance and current continuity, and clarify the key concept in the field. The validity of our new formalism is verified by first-principles calculation of the transient current through a carbon-nanotube-based device under the time-dependent bias voltage. Our work establishes firmly the correct numerical approach to calculate dynamic response of emerging electronic devices.

Keywords

Computational Methods 

References

  1. 1.
    S. Datta, Nanotechnology 15, S433 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    S.H. Ke, H.U. Baranger, W.T. Yang, J. Am. Chem. Soc. 126, 15897 (2004)CrossRefGoogle Scholar
  3. 3.
    N.D. Lang, Phys. Rev. B 52, 5335 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    N.D. Lang, P. Avouris, Phys. Rev. Lett. 84, 358 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Y.Q. Xue, S. Datta, M.A. Ratner, Chem. Phys. 281, 151 (2002)CrossRefADSGoogle Scholar
  7. 7.
    M. Büttiker, A. Prêtre, H. Thomas, Phys. Rev. Lett. 70, 4114 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    M. Büttiker, J. Math. Phys. 37, 4793 (1996)MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Ya.M. Blanter, F.W.J. Hekking, M. Büttiker, Phys. Rev. Lett. 81, 1925 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    M.P. Anantram, S. Datta, Phys. Rev. B 51, 7632 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    B.G. Wang, J. Wang, H. Guo, Phys. Rev. Lett. 82, 398 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    T. Yamamoto, K. Sasaoka, S. Watanabe, K. Watanabe, Phys. Rev. B 81, 115448 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    J.N. Zhuang, L. Zhang, J. Wang, AIP Advances 1, 042180 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Y.D. Wei, J. Wang, Phys. Rev. B 79, 195315 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    L. Arrachea, M. Moskalets, Phys. Rev. B 74, 245322 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Mo, X. Zheng, G.H. Chen, Y.J. Yan, J. Phys.: Condens. Matter 21, 355301 (2009)CrossRefGoogle Scholar
  19. 19.
    X. Zheng, G.H. Chen, Y. Mo, S.K. Koo, H. Tian, C.Y. Yam, Y.J. Yan, J. Chem. Phys. 133, 114101 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    X. Zheng, F. Wang, C.Y. Yam, Y. Mo, G.H. Chen, Phys. Rev. B 75, 195127 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    C.Y. Yam, Y. Mo, F. Wang, X.B. Li, G.H. Chen, X. Zheng, Y. Matsuda, J. Tahir-Kheli, W.A. Goddard, Nanotechnology 19, 495203 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • JianQiao Zhang
    • 1
  • ZhenYu Yin
    • 1
  • Xiao Zheng
    • 2
  • ChiYung Yam
    • 1
  • GuanHua Chen
    • 1
    Email author
  1. 1.Department of ChemistryThe University of Hong KongHong KongP.R. China
  2. 2.Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefei, AnhuiP.R. China

Personalised recommendations