Social and place-focused communities in location-based online social networks

  • Chloë Brown
  • Vincenzo Nicosia
  • Salvatore Scellato
  • Anastasios Noulas
  • Cecilia Mascolo
Regular Article

Abstract

Thanks to widely available, cheap Internet access and the ubiquity of smartphones, millions of people around the world now use online location-based social networking services. Understanding the structural properties of these systems and their dependence upon users’ habits and mobility has many potential applications, including resource recommendation and link prediction. Here, we construct and characterise social and place-focused graphs by using longitudinal information about declared social relationships and about users’ visits to physical places collected from a popular online location-based social service. We show that although the social and place-focused graphs are constructed from the same data set, they have quite different structural properties. We find that the social and location-focused graphs have different global and meso-scale structure, and in particular that social and place-focused communities have negligible overlap. Consequently, group inference based on community detection performed on the social graph alone fails to isolate place-focused groups, even though these do exist in the network. By studying the evolution of tie structure within communities, we show that the time period over which location data are aggregated has a substantial impact on the stability of place-focused communities, and that information about place-based groups may be more useful for user-centric applications than that obtained from the analysis of social communities alone.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002) MATHCrossRefADSGoogle Scholar
  2. 2.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003) MathSciNetMATHCrossRefADSGoogle Scholar
  3. 3.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006) MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008) Google Scholar
  5. 5.
    M. Newman, Networks: an introduction (Oxford University Press, Oxford, 2010) Google Scholar
  6. 6.
    M. Granovetter, Am. J. Sociol. 78, 1360 (1973) CrossRefGoogle Scholar
  7. 7.
    J.S. Coleman, Am. J. Sociol. 94, S95 (1988) CrossRefGoogle Scholar
  8. 8.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009) CrossRefADSGoogle Scholar
  9. 9.
    M. Szell, R. Lambiotte, S. Thurner, Proc. Natl. Acad. Sci. USA 107, 13636 (2010) CrossRefADSGoogle Scholar
  10. 10.
    J.-P. Onnela, F. Reed-Tsochas, Proc. Natl. Acad. Sci. USA 107, 18375 (2010) CrossRefADSGoogle Scholar
  11. 11.
    K. Lewis, M. González, J. Kaufman, Proc. Natl. Acad. Sci. USA 109, 68 (2012) CrossRefADSGoogle Scholar
  12. 12.
    J. Borge-Holthoefer, A. Rivero, I. García, E. Cauhé, A. Ferrer, D. Ferrer, D. Francos, D. Iñiguez, M.P. Pérez, G. Ruiz, F. Sanz, F. Serrano, C. Viñas, A. Tarancón, Y. Moreno, PLoS ONE 6, e23883 (2011) CrossRefGoogle Scholar
  13. 13.
    D.J. Crandall, L. Backstrom, D. Cosley, S. Suri, Huttenlocher, D. Kleinberg, Proc. Natl. Acad. Sci. USA 107, 22436 (2010) CrossRefADSGoogle Scholar
  14. 14.
    J.J. Jones, J.E. Settle, R.M. Bond, C.J. Fariss, C. Marlow, J.H. Fowler, PLoS ONE 8, e52168 (2013) CrossRefADSGoogle Scholar
  15. 15.
    Y. Liu, B. Viswanath, M. Mondal, A. Mislove,Proceedings of WWW ’12 (2012), pp. 385–388 Google Scholar
  16. 16.
    S. Papadopoulos, Y. Kompatsiaris, A. Vakali, P. Spyridonos, Data Min. Knowl. Disc. 24, 514 (2011) Google Scholar
  17. 17.
    J.M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, P. Rodriguez,Proceedings of SIGCOMM ’10 (2010), pp. 375–386 Google Scholar
  18. 18.
    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002) MathSciNetMATHCrossRefADSGoogle Scholar
  19. 19.
    M.E.J. Newman, Eur. Phys. J. B 38, 321 (2004) CrossRefADSGoogle Scholar
  20. 20.
    M.E.J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577 (2006) CrossRefADSGoogle Scholar
  21. 21.
    S. Fortunato, Phys. Rep. 486, 75 (2009) MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan,Proceedings of KDD ’06 (2006), pp. 44–54 Google Scholar
  23. 23.
    R. Kumar, J. Novak, A. Tomkins,Link Mining: Models, Algorithms, and Applications, edited by P.S.S. Yu, J. Han, C. Faloutsos (Springer, New York, 2010), pp. 337–357 Google Scholar
  24. 24.
    A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, B. Bhattacharjee,Proceedings of IMC ’07 (2007), pp. 29–42 Google Scholar
  25. 25.
  26. 26.
  27. 27.
  28. 28.
    L. Backstrom, E. Sun, C. Marlow,Proceedings of WWW ’10 (2010), pp. 61–70 Google Scholar
  29. 29.
    J. Cranshaw, E. Toch, J. Hong, A. Kittur, N. Sadeh,Proceedings of UbiComp ’10 (2010), pp. 119–128 Google Scholar
  30. 30.
    D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, A. Tomkins, Proc. Natl. Acad. Sci. USA 102, 11623 (2005) CrossRefADSGoogle Scholar
  31. 31.
    S. Scellato, A. Noulas, R. Lambiotte, C. Mascolo,Proceedings of ICWSM ’11 (2011), pp. 329–336 Google Scholar
  32. 32.
    A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2007) MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002) CrossRefADSGoogle Scholar
  34. 34.
    M.E.J. Newman, Phys. Rev. E 67, 026126 (2003) MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. 10, P10008 (2008) CrossRefGoogle Scholar
  36. 36.
    A. Arenas, J. Duch, A. Fernández, S. Gómez, New J. Phys. 9, 176 (2007) CrossRefADSGoogle Scholar
  37. 37.
    C. Brown, V. Nicosia, S. Scellato, A. Noulas, C. Mascolo,Proceedings of WOSN ’12 (2012), pp. 31–36 Google Scholar
  38. 38.
    H. Kwak, Y. Choi, Y.-H. Eom, H. Jeong, S. Moon, Proceedings of IMC ’09 (2009), pp. 301–314 Google Scholar
  39. 39.
    J.-P. Onnela, S. Arbesman, M.C. González, A.-L. Barabási, N.A. Christakis, PLoS ONE 6, 4 (2011) CrossRefGoogle Scholar
  40. 40.
    S. Scellato, A. Noulas, C. Mascolo, Proceedings of KDD ’11, 1046 (2011), pp. 1046–1054 Google Scholar
  41. 41.
    J.Q. Stewart, Science 93, 89 (1941) CrossRefADSGoogle Scholar
  42. 42.
    H. Kwak, H. Chun, S. Moon, Proceedings of CHI ’11, (2011), pp. 1091−1100 Google Scholar
  43. 43.
    S. Asur, S. Parthasarathy, D. Ucar, ACM Trans. Knowl. Discov. Data 3, 4 (2009) CrossRefGoogle Scholar
  44. 44.
    D. Greene, D. Doyle, P. Cunningham,International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2010), pp. 176−183 Google Scholar
  45. 45.
    G. Palla, A.-L. Barabási, T. Vicsek, Nature 446, 664 (2007) CrossRefADSGoogle Scholar
  46. 46.
    C. Tantipathananandh, T. Berger-Wolf, D. Kempe,Proceedings of KDD ’07, (2007), pp. 717−726 Google Scholar
  47. 47.
    J. Lindqvist, J. Cranshaw, J. Wiese, J. Hong, J. Zimmerman, Proceedings of CHI ’11 (2011), pp. 2409–2418 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chloë Brown
    • 1
  • Vincenzo Nicosia
    • 1
    • 2
  • Salvatore Scellato
    • 1
  • Anastasios Noulas
    • 1
  • Cecilia Mascolo
    • 1
  1. 1.Computer Laboratory, University of CambridgeCambridgeUK
  2. 2.School of Mathematical Sciences, Queen Mary University of LondonLondonUK

Personalised recommendations