Advertisement

Nonlinear dynamics investigation in parameter planes of a periodically forced compound KdV-Burgers equation

  • Paulo C. RechEmail author
Regular Article

Abstract

Parameter plane plots related to a periodically forced compound Korteweg-de Vries-Burgers system, which is modeled by a third-order partial differential equation, are reported. It is shown that typical periodic structures embedded in a chaotic region in these parameter planes, organize themselves in different ways. There are bifurcation sequences whose periods have a well-defined law of formation, that may be written in a closed form, and there are bifurcation sequences self-organized in period-adding cascades.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    D.J. Korteweg, G. de Vries, Phil. Mag. 39, 422 (1895)zbMATHGoogle Scholar
  2. 2.
    C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Stud. Appl. Math. 53, 249 (1974)MathSciNetGoogle Scholar
  4. 4.
    A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics (Springer, New York, 1992)Google Scholar
  5. 5.
    M. Wang, Phys. Lett. A 213, 279 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    E.J. Parkes, B.R. Duffy, Phys. Lett. A 229, 217 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Z. Feng, Phys. Lett. A 293, 57 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    W.G. Zhang, Q.S. Chang, B.G. Jiang, Chaos Solitons Fractals 13, 311 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    E.J. Parkes, Phys. Lett. A 317, 424 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    J. Yu, Y.Q. Ke, W.J. Zhang, Commun. Theor. Phys. 41, 493 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    J. Yu, W. Zhang, X. Gao, Chaos Solitons Fractals 33, 1307 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    J. Yu, R. Zhang, G. Jin, Phys. Scr. 84, 065004 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    G. Yu, J. Yu, Int. J. Bifurc. Chaos 22, 1250193 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Cao, J.M. Seoane, M.A.F. Sanjuán, Chaos Solitons Fractals 34, 197 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    G. Austin, Math. Biosci. 11, 163 (1971)zbMATHCrossRefGoogle Scholar
  16. 16.
    J. Cronin, Math. Biosci. 16, 209 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    J.J. Nieto, A. Tores, J. Neurol. Sci. 177, 18 (2000)CrossRefGoogle Scholar
  18. 18.
    M. Bikdash, B. Balachandran, A. Nayfeh, Nonlinear Dyn. 6, 101 (1994)Google Scholar
  19. 19.
    I. Dobson, H. D. Chiang, Syst. Control Lett. 13, 253 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    V. Ajjarapu, B. Lee, Trans. Power Syst. 17, 424 (1992)CrossRefGoogle Scholar
  21. 21.
    E.H. Abed, H.O. Wang, J.C. Alexander, A.M.A. Hamdan, H.C. Lee, Int. J. Bifurc. Chaos 03, 1169 (1993)CrossRefGoogle Scholar
  22. 22.
    E. Metter, Dynamic buckling, in Handbook of engineering mechanics, edited by W. Flügge (Wiley, New York, 2003)Google Scholar
  23. 23.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003)Google Scholar
  25. 25.
    A.C. Mathias, P.C. Rech, Neural Networks 34, 42 (2012)CrossRefGoogle Scholar
  26. 26.
    E.S. Medeiros, S.L.T. de Souza, R.O. Medrano-T, I.L. Caldas, Chaos Solitons Fractals 44, 982 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    E.S. Medeiros, R.O. Medrano-T, I.L. Caldas, S.L.T. de Souza, Phys. Lett. A 377, 628 (2013)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade do Estado de Santa CatarinaJoinvilleBrazil

Personalised recommendations