Advertisement

Stochastic magnetization dynamics in single domain particles

  • Stefano Giordano
  • Yannick Dusch
  • Nicolas Tiercelin
  • Philippe Pernod
  • Vladimir Preobrazhensky
Regular Article

Abstract

Magnetic particles are largely utilized in several applications ranging from magnetorheological fluids to bioscience and from nanothechnology to memories or logic devices. The behavior of each single particle at finite temperature (under thermal stochastic fluctuations) plays a central role in determining the response of the whole physical system taken into consideration. Here, the magnetization evolution is studied through the Landau-Lifshitz-Gilbert formalism and the non-equilibrium statistical mechanics is introduced with the Langevin and Fokker-Planck methodologies. As result of the combination of such techniques we analyse the stochastic magnetization dynamics and we numerically determine the convergence time, measuring the velocity of attainment of thermodynamic equilibrium, as function of the system temperature.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    R. Kaiser, G. Miskolczy, J. Appl. Phys. 41, 1064 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    A.L. Dantas, A.S. Carriço, N.S. Almeida, Eur. Phys. J. B 50, 581 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    S. Mørup, E. Tronc, Phys. Rev. Lett. 72, 3278 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    J. García-Otero, M. Porto, J. Rivas, A. Bunde, Phys. Rev. Lett. 84, 167 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    C. Kormann, H.M. Laun, H.J. Richter, Int. J. Mod. Phys. B 10, 3167 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    A.T. Skjeltorp, J. Appl. Phys. 57, 3285 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    S. Lamba, S. Annapoornia, Eur. Phys. J. B 39, 19 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M. Golosovsky, Y. Saado, D. Davidov, Appl. Phys. Lett. 75, 4168 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    M. Shinkai, J. Biosci. Bioeng. 94, 606 (2002)Google Scholar
  10. 10.
    I.-M. Hsing, Y. Xu, W. Zhaob, Electroanalysis 19, 755 (2007)CrossRefGoogle Scholar
  11. 11.
    Y.-W. Jun, J.-W. Seo, J. Cheon, Acc. Chem. Res. 41, 179 (2008)CrossRefGoogle Scholar
  12. 12.
    I. Safarik, M. Safarikova, BioMag. Res. Technol. 2, 7 (2004)CrossRefGoogle Scholar
  13. 13.
    N. Pamme, Lab on a Chip 6, 24 (2005)CrossRefGoogle Scholar
  14. 14.
    B. Gleich, J. Weizenecker, Nature 435, 1214 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    J. Weizenecker, B. Gleich, J. Rahmer, H. Dahnke, J. Borgert, Phys. Med. Biol. 54, L1 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005)CrossRefGoogle Scholar
  17. 17.
    K.J. Widder, R.M. Morris, G. Poore, D.P. Howard, A.E. Senyei, Proc. Natl. Acad. Sci. 78, 579 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    A. Jordan, P. Wust, R. Scholz, B. Tesch, H. Filhling, T. Mitrovics, T. Vogl, J. Cervos-Navarro, R. Felix, Int. J. Hyperthermia 12, 705 (1996)CrossRefGoogle Scholar
  19. 19.
    P. Moroz, S.K. Jones, B.N. Gray, Int. J. Hyperthermia 18, 267 (2002)CrossRefGoogle Scholar
  20. 20.
    M. Fiebig, J. Phys. D 38, 123 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    N. D’Souza, J. Atulasimha, S. Bandyopadhyay, J. Phys. D 44, 265001 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    N.A. Pertsev, H. Kohlstedt, Nanotechnology 21, 475202 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    K. Roy, S. Bandyopadhyay, J. Atulasimha, Appl. Phys. Lett. 99, 063108 (2011)CrossRefGoogle Scholar
  26. 26.
    N. Tiercelin, Y. Dusch, V. Preobrazhensky, P. Pernod, J. Appl. Phys. 109, 07D726 (2011)CrossRefGoogle Scholar
  27. 27.
    N. Tiercelin, Y. Dusch, A. Klimov, S. Giordano, V. Preobrazhensky, P. Pernod, Appl. Phys. Lett. 99, 192507 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V. Preobrazhensky, Phys. Rev. B 85, 155321 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    V. Novosad, Y. Otani, A. Ohsawa, S.G. Kim, K. Fukamichi, J. Koike, K. Maruyama, O. Kitakami, Y. Shimada, J. Appl. Phys. 87, 6400 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    K. Roy, S. Bandyopadhyay, J. Atulasimha, Phys. Rev. B 83, 224412 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    K. Roy, S. Bandyopadhyay, J. Atulasimha, J. Appl. Phys. 112, 023914 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    J. Tejada, E.M. Chudnovsky, E. del Barco, J.M. Hernandez, T.P. Spiller, Nanotechnology 12, 181 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    R. Kikuchi, J. Appl. Phys. 27, 1352 (1956)ADSCrossRefGoogle Scholar
  34. 34.
    G.V. Skrotskii, Sov. Phys. Usp. 27, 977 (1984)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    P. Hänggi, Phys. Rep. 88, 207 (1982)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    H. Risken, The Fokker-Planck equation (Springer-Verlag, Berlin, 1989)Google Scholar
  37. 37.
    W.T. Coffey, Yu. P. Kalmykov, J.P. Waldron, The Langevin equation (World Scientific, Singapore, 2004)Google Scholar
  38. 38.
    S.I. Denisov, Phys. Solid State 41, 1672 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    S.I. Denisov, K.N. Trohidou, Phys. Rev. B 64, 184433 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    S.I. Denisov, T.V. Lyutyy, P. Hänggi, Phys. Rev. Lett. 97, 227202 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    S.I. Denisov, T.V. Lyutyy, P. Hänggi, K.N. Trohidou, Phys. Rev. B 74, 104406 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    S.I. Denisov, K. Sakmann, P. Talkner, P. Hänggi, Phys. Rev. B 75, 184432 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    S.I. Denisov, A. Yu. Polyakov, T.V. Lyutyy, Phys. Rev. B 84, 174410 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    L. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935)MATHGoogle Scholar
  45. 45.
    T.L. Gilbert, Phys. Rev. 100, 1243 (1955) (abstract only)Google Scholar
  46. 46.
    T.L. Gilbert, IEEE Trans. Mag. 40, 3443 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    M. Lakshmanan, Phil. Trans. R. Soc. A 369, 1280 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  48. 48.
    W.F. Brown, J. Appl. Phys. 30, S130 (1959)CrossRefGoogle Scholar
  49. 49.
    W.F. Brown, J. Appl. Phys. 34, 1319 (1963)ADSCrossRefGoogle Scholar
  50. 50.
    W.F. Brown, Phys. Rev. 130, 1677 (1963)ADSCrossRefGoogle Scholar
  51. 51.
    W.F. Brown, IEEE Trans. Magn. 15, 1196 (1979)ADSCrossRefGoogle Scholar
  52. 52.
    S. Giordano, P.L. Palla, J. Phys. A 41, 415205 (2008)MathSciNetCrossRefGoogle Scholar
  53. 53.
    J.C. Mallinson, IEEE Trans. Magn. 23, 2003 (1987)ADSCrossRefGoogle Scholar
  54. 54.
    P. Podio-Guidugli, Eur. Phys. J. B 19, 417 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    G. Bertotti, I.D. Mayergoyz, C. Serpico, Physica B 306, 102 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    W.M. Saslow, J. Appl. Phys. 105, 07D315 (2009)CrossRefGoogle Scholar
  57. 57.
    J.-E. Wegrowe, M.-C. Ciornei, Am. J. Phys. 80, 607 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930)ADSMATHCrossRefGoogle Scholar
  59. 59.
    M.C. Wang, G.E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945)MathSciNetADSMATHCrossRefGoogle Scholar
  60. 60.
    P. Caldirola, L.A. Lugiato, Physica A 116, 248 (1982)MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    B. Bianco, E. Moggia, S. Giordano, W. Rocchia, A. Chiabrera, Nuovo Cim. 116, 155 (2001)ADSGoogle Scholar
  62. 62.
    J.L. García-Palacios, Eur. Phys. J. B 11, 293 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    Z. Schuss, Theory, Applications of Stochastic Differential Equations (John Wiley & Sons, New York, 1980)Google Scholar
  64. 64.
    Z. Schuss, Theory, Applications of Stochastic Processes (Springer, New York, 2010)Google Scholar
  65. 65.
    G. Bertotti, I. Mayergoyz, C. Serpico, Nonlinear Magnetization Dynamic in Nanosystems (Elsevier, Oxford, 2000)Google Scholar
  66. 66.
    D.R. Fredkin, Physica B 306, 26 (2001)ADSCrossRefGoogle Scholar
  67. 67.
    H. Fukushima, Y. Uesaka, Y. Nakatani, N. Hayashi, J. Magn. Magn. Mater. 242, 1002 (2002)ADSCrossRefGoogle Scholar
  68. 68.
    H. Fukushima, Y. Uesaka, Y. Nakatani, N. Hayashi, IEEE Trans. Magn. 38, 2394 (2002)ADSCrossRefGoogle Scholar
  69. 69.
    H. Fukushima, Y. Uesaka, Y. Nakatani, N. Hayashi, J. Magn. Magn. Mater. 272, 745 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    Yu.P. Kalmykov, J. Mol. Liq. 69, 117 (1996)Google Scholar
  71. 71.
    W.T. Coffey, L.J. Geoghegan, J. Mol. Liq. 69, 53 (1996)Google Scholar
  72. 72.
    Yu. P. Kalmykov, S.V. Titov, Phys. Rev. Lett. 82, 2967 (1999)ADSCrossRefGoogle Scholar
  73. 73.
    W.T. Coffey, D.A. Garanin, H. Kachkachi, D.J. McCarthy, J. Magn. Magn. Mater. 221, 110 (2000)ADSCrossRefGoogle Scholar
  74. 74.
    P.M. Déjardin, D.S.F. Crothers, W.T. Coffey, D.J. McCarthy, Phys. Rev. E 63, 021102 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    Yu.P. Kalmykov, W.T. Coffey, B. Ouari, S.V. Titov, J. Magn. Magn. Mater. 292, 372 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    B. Ouari, Yu. P. Kalmykov, J. Appl. Phys. 100, 123912 (2006)ADSCrossRefGoogle Scholar
  77. 77.
    J.L. García-Palacios, F.J. Lázaro, Phys. Rev. B 58, 14937 (1998)ADSCrossRefGoogle Scholar
  78. 78.
    S. Giordano, J. Electrost. 58, 59 (2003)CrossRefGoogle Scholar
  79. 79.
    D.R. Brillinger, J. Theor. Prob. 10, 429 (1997)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    V. Tulovsky, L. Papiez, Appl. Math. Lett. 14, 881 (2001)MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    B.J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976)Google Scholar
  82. 82.
    P.F. de Châtel, I. Nándori, J. Hakl, S. Mészáros, K. Vad, J. Phys.: Condens. Matter 21, 124202 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Orlando, 1976)Google Scholar
  84. 84.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (John Wiley & Sons, New York, 1996)Google Scholar
  85. 85.
    F. Manca, S. Giordano, P.L. Palla, R. Zucca, F. Cleri, L. Colombo, J. Chem. Phys. 136, 154906 (2012)ADSCrossRefGoogle Scholar
  86. 86.
    F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, J. Chem. Phys. 137, 244907 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publication Inc., New York, 1970)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefano Giordano
    • 1
  • Yannick Dusch
    • 1
  • Nicolas Tiercelin
    • 1
  • Philippe Pernod
    • 1
  • Vladimir Preobrazhensky
    • 1
    • 2
  1. 1.International Associated Laboratory LEMAC/LICS, IEMN, UMR CNRS 8520Villeneuve d’AscqFrance
  2. 2.Wave Research Center, Prokhorov General Physics Institute, Russian Academy of ScienceMoscowRussia

Personalised recommendations