Advertisement

Critical reflexivity in financial markets: a Hawkes process analysis

  • Stephen J. HardimanEmail author
  • Nicolas Bercot
  • Jean-Philippe Bouchaud
Regular Article

Abstract

We model the arrival of mid-price changes in the E-mini S&P futures contract as a self-exciting Hawkes process. Using several estimation methods, we find that the Hawkes kernel is power-law with a decay exponent close to −1.15 at short times, less than ≈ 103 s, and crosses over to a second power-law regime with a larger decay exponent ≈–1.45 for longer times scales in the range [103 ,106 ] seconds. More importantly, we find that the Hawkes kernel integrates to unity independently of the analysed period, from 1998 to 2011. This suggests that markets are and have always been close to criticality, challenging a recent study which indicates that reflexivity (endogeneity) has increased in recent years as a result of increased automation of trading. However, we note that the scale over which market events are correlated has decreased steadily over time with the emergence of higher frequency trading.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R.J. Shiller, Am. Econ. Rev. 71, 421 (1981)Google Scholar
  2. 2.
    S.F. LeRoy, R.D. Porter, Econometrica 49, 555 (1981)CrossRefzbMATHGoogle Scholar
  3. 3.
    S.F. LeRoy, Excess Volatility UCSB working paper (2005), available at http://www.econ.ucsb.edu/˜sleroy/downloads/excess.pdf
  4. 4.
    D.M. Cutler, J.M. Poterba, L.H. Summers, J. Portfolio Management 15, 4 (1989)CrossRefGoogle Scholar
  5. 5.
    R.C. Fair, J. Business 75, 713 (2002)CrossRefGoogle Scholar
  6. 6.
    A. Joulin, A. Lefevre, D. Grunberg, J.-P. Bouchaud, Wilmott Magazine, arXiv:0803.1769 (2008)Google Scholar
  7. 7.
    C. MacKay, Memoirs of Extraordinary Delusions and the Madness of Crowd (L.C. Page, Boston, 1932), p. 1852.Google Scholar
  8. 8.
    C.M. Reinhart, K.S. Rogoff, This time is different (Princeton University Press, 2009)Google Scholar
  9. 9.
    A. Pomeranets, Bank Canada Rev. 3 (2012) (and references therein)Google Scholar
  10. 10.
    J.M. Keynes, The general Theory of Employment, Interest and Money (McMillan, London, 1936), Chap. 12Google Scholar
  11. 11.
    G. Soros, The New Paradigm for Financial Markets: The Credit Crisis of 2008 and What it Means (PublicAffairs, New York, 2008)Google Scholar
  12. 12.
    D. Sornette, Endogenous versus exogenous origins of crises in Extreme Events in Nature and Society, edited by S. Albeverio, V. Jentsch, H. Kantz (Springer, Heidelberg, 2005)Google Scholar
  13. 13.
    J.-P. Bouchaud, The Endogenous Dynamics of Markets: Price Impact, Feedback Loops and Instabilities in Lessons from the 2008 Crisis, edited by A. Berd (Risk Books, Incisive Media, London, 2011)Google Scholar
  14. 14.
    V. Filimonov, D. Sornette, Phys. Rev. E 85, 056108 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    P. Embrechts, T. Liniger, L. Lin, J. Appl. Probab. A 48, 367 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Bacry, S. Delattre, M. Hoffmann, J.F. Muzy, Quant. Financ. 13, 65 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    E. Bacry, K. Dayri, J.-F. Muzy, Eur. Phys. J. B 85, 157 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    G. Bormetti, L.M. Calcagnile, M. Treccani, F. Corsi, S. Marmi, F. Lillo, arXiv:1301.6141 [q-fin.ST] (2013)Google Scholar
  19. 19.
    D. Easley, M.L. de Prado, M. O’Hara, J. Portfolio, Management 37, 118 (2011)Google Scholar
  20. 20.
    D. Challet, M. Marsili, Y.-C. Zhang, Minority Game (Oxford University Press, 2005)Google Scholar
  21. 21.
    J.-P. Bouchaud, Y. Gefen, M. Potters, M. Wyart, Quant. Financ. 4, 176 (2012)ADSGoogle Scholar
  22. 22.
    F. Caccioli, M. Marsili, P. Vivo, Eur. Phys. J. B 71, 467 (2009)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    B. Tóth, Y. Lempérière, C. Deremble, J. de Lataillade, J. Kockelkoren, J.-P. Bouchaud, Phys. Rev. X 1, 021006 (2011)CrossRefGoogle Scholar
  24. 24.
    F. Patzelt, K. Pawelzik, arXiv:1211.6695 [q-fin.TR] (2012)Google Scholar
  25. 25.
    D.R. Parisi, D. Sornette, D. Helbing, Phys. Rev. E 87, 012804 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    G. Zumbach, C. Finger, Wilmott J. 2, 193 (2010)CrossRefGoogle Scholar
  27. 27.
    T.E. Harris, The Theory of Branching Processes (Dover Publications, 2002)Google Scholar
  28. 28.
    P. Brémaud, L. Massoulié, J. Appl. Probab. 38, 122 (2001)CrossRefzbMATHGoogle Scholar
  29. 29.
    A.G. Hawkes, Biometrika 58, 83 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    D.J. Daley, R. Vesilo, Stochastic Processes and their Applications 70, 265 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    I. Rubin, IEEE Trans. Inf. Theor. IT-18, 547 (1972)CrossRefGoogle Scholar
  32. 32.
    T. Ozaki, Ann. Inst. Stat. Math. 31, 145 (1979), part BMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Y. Ogata, J. Am. Stat. Assoc. 83, 9 (1988)CrossRefGoogle Scholar
  34. 34.
    C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49, 1685 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, H.E. Stanley, Phys. Rev. E 60, 1390 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    F. Wang, K. Yamasaki, S. Havlin, H.E. Stanley, Phys. Rev. E 73, 026117 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    J.F. Muzy, J. Delour, E. Bacry, Eur. Phys. J. B 17, 537 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    R. Chicheportiche, J.-P. Bouchaud, arXiv:1206.2153 [q-fin.ST] (2012) (and references therein)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stephen J. Hardiman
    • 1
    Email author
  • Nicolas Bercot
    • 1
  • Jean-Philippe Bouchaud
    • 1
  1. 1.Capital Fund ManagementParisFrance

Personalised recommendations