Advertisement

Multiphase density functional theory parameterization of the interatomic potential for silver and gold

  • John T. Titantah
  • Mikko KarttunenEmail author
Regular Article

Abstract

The ground state energies of Ag and Au in the face-centered cubic (FCC), body-centered cubic (BCC), simple cubic (SC) and the hypothetical diamond-like phase, and dimer were calculated as a function of bond length using density functional theory (DFT). These energies were then used to parameterize the many-body Gupta potential for Ag and Au. We propose a new parameterization scheme that adopts coordination dependence of the parameters using the well-known Tersoff potential as its starting point. This parameterization, over several phases of Ag and Au, was performed to guarantee transferability of the potentials and to make them appropriate for studies of related nanostructures. Depending on the structure, the energetics of the surface atoms play a crucial role in determining the details of the nanostructure. The accuracy of the parameters was tested by performing a 2 ns MD simulation of a cluster of 55 Ag atoms – a well studied cluster of Ag, the most stable structure being the icosahedral one. Within this time scale, the initial FCC lattice was found to transform to the icosahedral structure at room temperature. The new set of parameters for Ag was then used in a temperature dependent atom-by-atom deposition of Ag nanoclusters of up to 1000 atoms. We find a deposition temperature of 500 ± 50 K where low energy clusters are generated, suggesting an optimal annealing temperature of 500 K for Ag cluster synthesis. Surface energies were also calculated via a 3 ns MD simulation.

Keywords

Computational Methods 

References

  1. 1.
    J.S. Kim et al., Nanomed. Nanotechnol. Biol. Med. 3, 95 (2007) CrossRefGoogle Scholar
  2. 2.
    H.H. Lara, L. Ixtepan-Turrent, E.N. Garza Trevino, D.K. Singh, J. Nanobiotechnology 9, 38 (2011) CrossRefGoogle Scholar
  3. 3.
    S. Gurunathan, K.J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, S.H. Eom, Biomat. 30, 6341 (2009) CrossRefGoogle Scholar
  4. 4.
    N. Portney, M. Ozkan, Anal. Bioanal. Chem. 384, 620 (2006) CrossRefGoogle Scholar
  5. 5.
    X. Huang, I. El-Sayed, W. Qian, M. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006) CrossRefGoogle Scholar
  6. 6.
    Y.Q. Chen, C.J. Lu, Sens. Actuators B Chem. 135, 492 (2009) CrossRefADSGoogle Scholar
  7. 7.
    E. Filippo, A. Serra, D. Manno, Sens. Actuators B Chem. 138, 625 (2009) CrossRefGoogle Scholar
  8. 8.
    X. He, C. Hu, H. Liu, G. Du, Y. Xi, Y. Jiang, Sens. Actuators B Chem. 144, 289 (2010) CrossRefGoogle Scholar
  9. 9.
    M.R.H. Nezhad, J. Tashkhourian, J. Khodaveisi, J. Iran. Chem. Soc. 7, S83 (2010) CrossRefGoogle Scholar
  10. 10.
    R.F. Ngece, N. West, P.M. Ndangili, R.A. Olowu, A. Williams, N. Hendricks, S. Mailu, P. Baker, E. Iwuoha, Int. J. Electrochem. Sci. 6, 1820 (2011) Google Scholar
  11. 11.
    M.S. Bootharaju, T. Pradeep, Langmuir 27, 8134 (2011) CrossRefGoogle Scholar
  12. 12.
    H. Lee, K. Chou, K. Huang, Nanotechnology 16, 2436 (2005) CrossRefADSGoogle Scholar
  13. 13.
    D. Chen, X. Qiao, X. Qiu, J. Chen, J. Mater. Sci. 44, 1076 (2009) CrossRefADSGoogle Scholar
  14. 14.
    S.L.C. Hsu, R.T. Wu, Mater. Lett. 61, 3719 (2007) CrossRefGoogle Scholar
  15. 15.
    H. Lee, K. Chou, Z. Shih, Int. J. Adhes. Adhes. 25, 437 (2005) CrossRefGoogle Scholar
  16. 16.
    A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Appl. Phys. Lett. 97, 153117 (2010) CrossRefADSGoogle Scholar
  17. 17.
    Y.C. Hung, W.T. Hsu, T.Y. Lin, L. Fruk, Appl. Phys. Lett. 99, 253301 (2011) CrossRefADSGoogle Scholar
  18. 18.
    A. Ashkin, Phys. Rev. Lett. 24, 156 (1970) CrossRefADSGoogle Scholar
  19. 19.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986) CrossRefADSGoogle Scholar
  20. 20.
    M. Liu, T. Zentgraf, Y. Liu, G. Bartal, X. Zhang, Nat. Nanotechnol. 5, 570 (2010) CrossRefADSGoogle Scholar
  21. 21.
    F. Svedberg, M. Kall, Faraday Disc. 132, 35 (2006) CrossRefADSGoogle Scholar
  22. 22.
    S.R. Bhattacharyya, D. Datta, I. Shyjumon, B.M. Smirnov, T.K. Chini, D. Ghose, R. Hippler, J. Phys. D 42, 035306 (2009) CrossRefADSGoogle Scholar
  23. 23.
    C.A.J. Lin, C.H. Lee, J.T. Hsieh, H.H. Wang, J.K. Li, J.L. Shen, W.H. Chan, H.I. Yeh, W.H. Chang, J. Med. Biol. Eng. 29, 276 (2009) Google Scholar
  24. 24.
    M.A. MacDonald, D.M. Chevrier, P. Zhang, H. Qian, R. Jin, J. Phys. Chem. C 115, 15282 (2011) CrossRefGoogle Scholar
  25. 25.
    H. Qian, M. Zhu, U.N. Andersen, R. Jin, J. Phys. Chem. A 113, 4281 (2009) CrossRefGoogle Scholar
  26. 26.
    H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, Y. Lu, Analyst 135, 1406 (2010) CrossRefADSGoogle Scholar
  27. 27.
    J.T. Petty, C. Fan, S.P. Story, B. Sengupta, A.S.J. Iyer, Z. Prudowsky, R.M. Dickson, J. Phys. Chem. Lett. 1, 2524 (2010) CrossRefGoogle Scholar
  28. 28.
    M. Takesue, T. Tomura, M. Yamada, K. Hata, S. Kuwamoto, T. Yonezawa, J. Am. Chem. Soc. 133, 14164 (2011) CrossRefGoogle Scholar
  29. 29.
    D. Reinhard, B. Hall, D. Ugarte, R. Monot, Phys. Rev. B 55, 7868 (1997) CrossRefADSGoogle Scholar
  30. 30.
    M. Blom, D. Schooss, J. Stairs, M. Kappes, J. Chem. Phys. 124, 244308 (2006) CrossRefADSGoogle Scholar
  31. 31.
    X. Yang, W. Cai, X. Shao, J. Phys. Chem. A 111, 5048 (2007) CrossRefGoogle Scholar
  32. 32.
    H.C. Weissker, C. Mottet, Phys. Rev. B 84, 165443 (2011) CrossRefADSGoogle Scholar
  33. 33.
    L. Jensen, L.L. Zhao, G.C. Schatz, J. Phys. Chem. C 111, 4756 (2007) CrossRefGoogle Scholar
  34. 34.
    F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993) CrossRefADSGoogle Scholar
  35. 35.
    K. Michaelian, N. Rendon, I. Garzon, Phys. Rev. B 60, 2000 (1999) CrossRefADSGoogle Scholar
  36. 36.
    A.P. Sutton, J. Chen, Philos. Mag. Lett. 61, 139 (1990) CrossRefADSGoogle Scholar
  37. 37.
    J. Doye, D. Wales, New J. Chem. 22, 733 (1998) CrossRefGoogle Scholar
  38. 38.
    J. Mei, J.W. Davenport, G.W. Fernando, Phys. Rev. B 43, 4653 (1991) CrossRefADSGoogle Scholar
  39. 39.
    T. Shibata, B.A. Bunker, Z.Y. Zhang, D. Meisel, C.F. Vardeman, J.D. Gezelter, J. Am. Chem. Soc. 124, 11989 (2002) CrossRefGoogle Scholar
  40. 40.
    S. Zhao, S. Wang, H. Ye, J. Phys. Soc. Jpn 70, 2953 (2001) CrossRefADSGoogle Scholar
  41. 41.
    X. Wu, Y. Wu, X. Kai, G. Wu, Y. Chen, Chem. Phys. 390, 36 (2011) CrossRefADSGoogle Scholar
  42. 42.
    F. Pittaway, L.O. Paz-Borbon, R.L. Johnston, H. Arslan, R. Ferrando, C. Mottet, G. Barcaro, A. Fortunelli, J. Phys. Chem. C 113, 9141 (2009) CrossRefGoogle Scholar
  43. 43.
    X. Shao, X. Liu, W. Cai, J. Chem. Theor. Comput. 1, 762 (2005) CrossRefGoogle Scholar
  44. 44.
    P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990) CrossRefADSGoogle Scholar
  45. 45.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  46. 46.
    C. Kittel, Introduction to Solid State Physics, 4th edn. (John Wiley & Sons, Inc., New York, 1971) Google Scholar
  47. 47.
    J. Neighbours, G. Alers, Phys. Rev. 111, 707 (1958) CrossRefADSGoogle Scholar
  48. 48.
    R.L. Chantry, W. Siriwatcharapiboon, S.L. Horswell, A.J. Logsdail, R.L. Johnston, Z.Y. Li, J. Phys. Chem. C 116, 10312 (2012) CrossRefGoogle Scholar
  49. 49.
    M. Needels, A.M. Rappe, P.D. Bristowe, J.D. Joannopoulos, Phys. Rev. B 46, 9768 (1992) CrossRefADSGoogle Scholar
  50. 50.
    P. Soderlind, Phys. Rev. B 66, 176201 (2002) CrossRefADSGoogle Scholar
  51. 51.
    Q.M. Wei, X.Y. Liu, A. Misra, Appl. Phys. Lett. 98, 111907 (2011) CrossRefADSGoogle Scholar
  52. 52.
    F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993) CrossRefADSGoogle Scholar
  53. 53.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988) CrossRefADSGoogle Scholar
  54. 54.
    C.L. Dias, T. Ala-Nissila, M. Grant, M. Karttunen, J. Chem. Phys. 131, 054505 (2009) CrossRefADSGoogle Scholar
  55. 55.
    M. Morse, Chem. Rev. 86, 1049 (1986) CrossRefGoogle Scholar
  56. 56.
    F.R. Negreiros, Z. Kuntova, G. Barcaro, G. Rossi, R. Ferrando, A. Fortunelli, J. Chem. Phys. 132, 234703 (2010) CrossRefADSGoogle Scholar
  57. 57.
    V. Beutel, H.G. Kramer, G.L. Bhale, M. Kuhn, K. Weyers, W. Demtroder, J. Chem. Phys. 98, 2699 (1993) CrossRefADSGoogle Scholar
  58. 58.
    G. Wang, J. BelBruno, S. Kenny, R. Smith, Phys. Rev. B 69, 195412 (2004) CrossRefADSGoogle Scholar
  59. 59.
    S. Nigam, C. Majumder, Langmuir 26, 18776 (2010) CrossRefGoogle Scholar
  60. 60.
    K. Huber, H. Hertzberg, Molecular Spectra and Molecular Structure Constants of Diatomic Molecules (van Nostrand, New York, 1979), Vol. 4 Google Scholar
  61. 61.
    A. James, P. Kowalczyk, B. Simard, J. Pinegar, M. Morse, J. Mol. Spectrosc. 168, 248 (1994) CrossRefADSGoogle Scholar
  62. 62.
    S. Nosé, Mol. Phys. 52, 255 (1984) CrossRefADSGoogle Scholar
  63. 63.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985) CrossRefADSGoogle Scholar
  64. 64.
    W. Triftshauser, J.D. McGervey, Appl. Phys. 6, 177 (1975) CrossRefADSGoogle Scholar
  65. 65.
    I. Vasiliev, B. Medasani, Surface properties of silver and aluminum nanoclusters - art. no. 690207, in Quantum dots, particles, and nanoclusters V, edited by K. Eyink, F. Szmulowicz, D. Huffaker (SPIE, 2008). ISBN 978-0-8194-7077-5/ Conference on Quantum Dots, Particles, and Nanoclusters IV, San Jose, CA (2008) Google Scholar
  66. 66.
    W.R. Tyson, W.A. Miller, Surf. Sci. 62, 267 (1977) CrossRefADSGoogle Scholar
  67. 67.
    L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar, Surf. Sci. 411, 186 (1998) CrossRefADSGoogle Scholar
  68. 68.
    V. Fiorentini, M. Methfessel, J. Phys.: Condens. Matter 8, 6525 (1996) CrossRefADSGoogle Scholar
  69. 69.
    S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986) CrossRefADSGoogle Scholar
  70. 70.
    H.L. Skriver, N.M. Rosengaad, Phys. Rev. B 46, 7157 (1992) CrossRefADSGoogle Scholar
  71. 71.
    W. Zhang, Y. Liu, R. Cao, Z. Li, Y. Zhang, Y. Tang, K. Fan, J. Am. Chem. Soc. 130, 15581 (2008) CrossRefGoogle Scholar
  72. 72.
    B.D. Todd, R.M. Lynden-Bell, Surf. Sci. 281, 191 (1993) CrossRefADSGoogle Scholar
  73. 73.
    R. Fournier, J. Chem. Phys. 115, 2165 (2001) CrossRefADSGoogle Scholar
  74. 74.
    W. Huang, X. Lai, R. Xu, Chem. Phys. Lett. 507, 199 (2011) CrossRefADSGoogle Scholar
  75. 75.
    P.A. Doyle, P.S. Turner, Acta Cryst. A 24, 390 (1968) CrossRefGoogle Scholar
  76. 76.
    M.A.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. AlSalhi, Nano. Res. Lett. 6, 434 (2011) CrossRefGoogle Scholar
  77. 77.
    J.S. Kang, J. Ryu, H.S. Kim, H.T. Hahn, J. Electron. Mater. 40, 2268 (2011) CrossRefADSGoogle Scholar
  78. 78.
    H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystaline and amorphous material (Wiley, New York, 1954) Google Scholar
  79. 79.
    R. Govindaraj, R. Kesavamoorthy, R. Mythili, B. Viswanathan, J. Appl. Phys. 90, 958 (2001) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Applied Mathematics, The University of Western OntarioOntarioCanada
  2. 2.Department of Chemistry and Waterloo Institute for NanotechnologyUniversity of WaterlooOntarioCanada

Personalised recommendations