Optical manipulation of complex molecular systems by high density green photons: experimental and theoretical evidence

  • Sorin Comorosan
  • Silviu Polosan
  • Irinel Popescu
  • Ioan Stamatin
  • Elena Ionescu
  • Sorin Avramescu
  • Liviu Cristian Cune
  • Marian Apostol
Regular Article

Abstract

The recent revolution in modern optical techniques revealed that light interaction with matter generates a force, known as optical force, which produces material properties known in physics as optical matter. The basic technique of the domain uses forces exerted by a strongly focused beam of light to trap small objects and subsequently to manipulate their local structures. The purpose of this paper is to develop an alternative approach, using irradiations with high-density-green-photons, which induce electric dipoles by polarization effects. The materials used for the experiments were long carbon chains which represent the framework of biological macromolecules. The physical techniques used to reveal the locally induced molecular arrangements were: dynamic viscosity, zeta potential, chemiluminescence, liquid chromatography; mass spectrometry, and Raman and infrared spectroscopy. The principal result of our experiments was the detection of different molecular arrangements within the mixture of alkane chains, generated by our optical manipulations. This induced “optical matter” displayed two material properties: antioxidant effects and large molecular aggregation effects. In order to bring the experimental results in relation with theory, we developed a physical model and the interacting force between polarizable bodies was computed. By numerical calculations stable structures for N = 6 and N = 8 particles were obtained.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    D.G. Grier, Nature 424, 810 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Crocher, D.G. Grier, Phys. Rev. Lett. 73, 352 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    K. Svoboda, P.P. Mitra, S.M. Block, Proc. Natl. Acad. Sci. 91, 11782 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    P.T. Korda, G.C. Spalding, D.G. Grier, Phys. Rev. B 66, 024504 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    R. Verma, J.C. Crocker, T.C. Lubenski, A.G. Yodh, Macromolecules 33, 177 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    G.M Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 89, 050601 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    S. Comorosan, S. Polosan, I. Popescu, E. Ionescu, R. Mitrica, L. Cristache, A.E. State, Eur. Biophys. J. 39, 1483 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Comorosan, S. Polosan, S. Jipa, I. Popescu, G. Marton, E. Ionescu, L. Cristache, D. Badila, R. Mitrica, J. Photochem. Photobiol. B 102, 39 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Comorosan, in Progress in Theoretical Biology, edited by R. Rosen (Academic Press, New York, 1976), p. 161Google Scholar
  11. 11.
    E.M. Vink, B.J. Cagnie, M.J. Cornelissen, H.A. Declercq, D.C. Cambier, Lasers Med. Sci. 18, 95 (2003)CrossRefGoogle Scholar
  12. 12.
    X. Wangshen, P. Jingzi, D. Alexander, J. McKerell, G. Jiali, J. Chem. Theor. Comput. 3, 1878 (2007)CrossRefGoogle Scholar
  13. 13.
    C.J. Seeton, Tribology Lett. 22, 67 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M.J. Assael, J.H. Dymond, M. Papadaki, P.M. Patterson, Int. J. Thermophys. 13, 269 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    G. Delmas, P. Purves, P. Saint Domain, J. Phys. Chem. 79, 1970 (1975)CrossRefGoogle Scholar
  16. 16.
    S.M. Sarathy, Combustion & Flame 158, 2338 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Vasudevan, J. Ravi, S. Ravisankar, B. Suresh, J. Pharm. Biomed. Anal. 25, 77 (2001)CrossRefGoogle Scholar
  18. 18.
    A. Lavanchy, R. Houriet, T. Gaumann, J. Mass. Spectr. 14, 79 (1979)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sorin Comorosan
    • 1
    • 2
  • Silviu Polosan
    • 3
  • Irinel Popescu
    • 4
  • Ioan Stamatin
    • 5
  • Elena Ionescu
    • 2
  • Sorin Avramescu
    • 6
  • Liviu Cristian Cune
    • 1
  • Marian Apostol
    • 1
  1. 1.Department of Theoretical PhysicsNational Institute for Physics and Nuclear EngineeringMagureleRomania
  2. 2.Interdisciplinary Research GroupRomanian AcademyBucharestRomania
  3. 3.Materials & Multifunctional StructuresNational Institute of Materials PhysicsMagureleRomania
  4. 4.Academy of Medical SciencesBucharestRomania
  5. 5.Department of BiophysicsUniversity of BucharestBucharestRomania
  6. 6.Department of ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations