Towards time-dependent, non-equilibrium charge-transfer force fields

Contact electrification and history-dependent dissociation limits
Regular Article

Abstract

Force fields uniquely assign interatomic forces for a given set of atomic coordinates. The underlying assumption is that electrons are in their quantum-mechanical ground state or in thermal equilibrium. However, there is an abundance of cases where this is unjustified because the system is only locally in equilibrium. In particular, the fractional charges of atoms, clusters, or solids tend to not only depend on atomic positions but also on how the system reached its state. For example, the charge of an isolated solid — and thus the forces between atoms in that solid — usually depends on the counterbody with which it has last formed contact. Similarly, the charge of an atom, resulting from the dissociation of a molecule, can differ for different solvents in which the dissociation took place. In this paper we demonstrate that such charge-transfer history effects can be accounted for by assigning discrete oxidation states to atoms. With our method, an atom can donate an integer charge to another, nearby atom to change its oxidation state as in a redox reaction. In addition to integer charges, atoms can exchange “partial charges” which are determined with the split charge equilibration method.

Keywords

Computational Methods 

References

  1. 1.
    S.W. Rick, S.J. Stuart, Rev. Comput. Chem. 18, 89 (2002)Google Scholar
  2. 2.
    P.E.M. Lopes, B. Roux, A.D. MacKerell Jr., Theor. Chem. Acc. 124, 11 (2009)CrossRefGoogle Scholar
  3. 3.
    M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross, Time-Dependent Density Functional Theory (Springer, Heidelberg, 2006)Google Scholar
  4. 4.
    W.B. Dapp, M.H. Müser (submitted)Google Scholar
  5. 5.
    K.D. Nielson, A.C.T. van Duin, J. Oxgaard, W.Q. Deng, W.A. Goddard, J. Phys. Chem. A 109, 493 (2005)CrossRefGoogle Scholar
  6. 6.
    V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, Weinheim, 2011)Google Scholar
  7. 7.
    M.H. Müser, Eur. Phys. J. B 85, 135 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    R.A. Nistor, J.G. Polihronov, M.H. Müser, N.J. Mosey, J. Chem. Phys. 125, 094108 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    R.A. Nistor, M.H. Müser, Phys. Rev. B 79, 104303 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D. Mathieu, J. Chem. Phys. 127, 224103 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    G.L. Warren, J.E. Davis, S. Patel, J. Chem. Phys. 128, 144110 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    T. Verstraelen, V.V. Speybroeck, M. Waroquier, J. Chem. Phys. 131, 044127 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    P.T. Mikulski, M.T. Knippenberg, J.A. Harrison, J. Chem. Phys. 131, 241105 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    W.J. Mortier, K. van Genechten, J. Gasteiger, J. Am. Chem. Soc. 107, 829 (1985)CrossRefGoogle Scholar
  15. 15.
    R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)CrossRefGoogle Scholar
  16. 16.
    P. Itskowitz, M.L. Berkowitz, J. Phys. Chem. A 101, 5687 (1997)CrossRefGoogle Scholar
  17. 17.
    M.T. Knippenberg, P.T. Mikulski, K.E. Ryan, S.J. Stuart, G.T. Gao, J.A. Harrison, J. Chem. Phys. 136, 164701 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    T. Verstraelen, S.V. Sukhomlinov, V. Van Speybroeck, M. Waroquier, K.S. Smirnov, J. Phys. Chem. C 116, 490 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Verstraelen (personal communication)Google Scholar
  20. 20.
    T. Verstraelen, E. Pauwels, F. De Proft, V. Van Speybroeck, P. Geerlings, M. Waroquier, J. Chem. Theor. Comput. 8, 661 (2012)CrossRefGoogle Scholar
  21. 21.
    S.M. Valone, J. Chem. Theor. Comput. 7, 2253 (2011)CrossRefGoogle Scholar
  22. 22.
    S.M. Valone, J. Phys. Chem. Lett. 2, 2618 (2011)CrossRefGoogle Scholar
  23. 23.
    D.G. Pettifor, I.I. Oleinik, Phys. Rev. B 59, 8487 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford, CT, 2004)Google Scholar
  25. 25.
    M. Born, J.E. Mayer, Z. Phys. 75, 1 (1931)ADSGoogle Scholar
  26. 26.
    A.R. Oganov, M.J. Gillan, G.D. Price, J. Chem. Phys. 118, 10174 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    J.S. Reparaz, L.R. Muniz, M.R. Wagner, A.R. Goni, M.I. Alonso, A. Hoffmann, B.K. Meyer, Appl. Phys. Lett. 96, 231906 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    J.C. Tully, J. Chem. Phys. 93, 1061 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    J. Lowell, A.C. Rose-Innes, Adv. Phys. 29, 947 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    A.F. Diaz, R.M. Felix-Navarro, J. Electrostatics 62, 277 (2004)CrossRefGoogle Scholar
  31. 31.
    C.M. Mate, Tribology on the Small Scale (Oxford University Press, Oxford, 2008)Google Scholar
  32. 32.
    L.S. McCarthy, G.M. Whiteside, Angew. Chem. Int. Ed. 47, 2188 (2008)CrossRefGoogle Scholar
  33. 33.
    W.R. Harper, Contact and Frictional Electrification (Laplacian Press, Morgan Hill, 1998)Google Scholar
  34. 34.
    N.J. Mosey, M.H. Müser, T.K. Woo, Science 307, 1612 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    N.J. Mosey, T.K. Woo, M.H. Müser, Phys. Rev. B 72, 054124 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    R.W. Gurney, Phys. Rev. 47, 479 (1935)ADSCrossRefGoogle Scholar
  37. 37.
    J. von Neumann, E. Wigner, Z. Phys. 30, 467 (1929)MATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Jülich Supercomputing Centre, Institute for Advanced SimulationFZ JülichJülichGermany
  2. 2.Department of Materials Science and EngineeringUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations