Variational approximations for stationary states of Ising-like models

  • Alessandro Pelizzola
Regular Article


We introduce a new variational approach to the stationary state of kinetic Ising-like models. The approach is based on the cluster expansion of the entropy term appearing in a functional which is minimized by the system history. We rederive a known mean-field theory and propose a new method, here called diamond approximation, which turns out to be more accurate and faster than other methods of comparable computational complexity.


Statistical and Nonlinear Physics 


  1. 1.
    N. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2007)Google Scholar
  2. 2.
    K. Kawasaki, in Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green (Academic, London, 1972), Vol. 2, p. 443Google Scholar
  3. 3.
    J.-F. Gouyet, M. Plapp, W. Dieterich, P. Maass, Adv. Phys. 52, 523 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    T. Petermann, P. De Los Rios, J. Theor. Biol. 229, 1 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Petermann, P. De Los Rios, Phys. Rev. E 69, 066116 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    R. Kikuchi, Phys. Rev. 124, 1682 (1961)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    T. Ishii, Prog. Theor. Phys. Suppl. 115, 243 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    F. Ducastelle, Prog. Theor. Phys. Suppl. 115, 255 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    K. Wada, M. Kaburagi, Prog. Theor. Phys. Suppl. 115, 273 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    R. Kikuchi, Phys. Rev. 81, 988 (1951)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    G. An, J. Stat. Phys. 52, 727 (1988)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    A. Pelizzola, J. Phys. A 38, R309 (2005)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    M. Zamparo, A. Pelizzola, J. Stat. Mech. P12009 (2006)Google Scholar
  14. 14.
    I. Neri, D. Bollé, J. Stat. Mech. P08009 (2009)Google Scholar
  15. 15.
    Y. Kanoria, A. Montanari, Ann. Appl. Prob. 21, 1694 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    E. Aurell, H. Mahmoudi, J. Stat. Mech. P04014 (2011)Google Scholar
  17. 17.
    E. Aurell, H. Mahmoudi, Commun. Theor. Phys. 56, 157 (2011)zbMATHCrossRefGoogle Scholar
  18. 18.
    E. Aurell, H. Mahmoudi, Phys. Rev. E 85, 031119 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Mézard, A. Montanari, Information, Physics and Computation (Oxford University Press, New York, 2009)Google Scholar
  20. 20.
    J.S. Yedidia, W.T. Freeman, Y. Weiss, IEEE Trans. Inf. Theory 51, 2282 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R.R. Netz, A.N. Berker, Phys. Rev. Lett. 66, 377 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Banavar, M. Cieplak, A. Maritan, Phys. Rev. Lett. 67, 1807 (1991)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    H. Matsuda, N. Ogita, A. Sasaki, K. Sato, Prog. Theor. Phys. 88, 1035 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    T. Heskes, K. Albers, B. Kappen, in Proceedings of the 19th Conference (UAI-2003), San Francisco, 2003, edited by U. Kjærulff, C. Meek (Morgan Kaufmann Publishers, San Francisco, 2003), p. 313Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienza Applicata e TecnologiaTorinoItaly
  2. 2.INFN, Sezione di Torino, via Pietro Giuria 1TorinoItaly
  3. 3.Human Genetics Foundation, HuGeFTorinoItaly

Personalised recommendations