Phase transition of Boolean networks with partially nested canalizing functions

  • Kayse Jansen
  • Mihaela Teodora MatacheEmail author
Regular Article


We generate the critical condition for the phase transition of a Boolean network governed by partially nested canalizing functions for which a fraction of the inputs are canalizing, while the remaining non-canalizing inputs obey a complementary threshold Boolean function. Past studies have considered the stability of fully or partially nested canalizing functions paired with random choices of the complementary function. In some of those studies conflicting results were found with regard to the presence of chaotic behavior. Moreover, those studies focus mostly on ergodic networks in which initial states are assumed equally likely. We relax that assumption and find the critical condition for the sensitivity of the network under a non-ergodic scenario. We use the proposed mathematical model to determine parameter values for which phase transitions from order to chaos occur. We generate Derrida plots to show that the mathematical model matches the actual network dynamics. The phase transition diagrams indicate that both order and chaos can occur, and that certain parameters induce a larger range of values leading to order versus chaos. The edge-of-chaos curves are identified analytically and numerically. It is shown that the depth of canalization does not cause major dynamical changes once certain thresholds are reached; these thresholds are fairly small in comparison to the connectivity of the nodes.


Statistical and Nonlinear Physics 


  1. 1.
    S.A. Kauffman, The origins of order (Oxford University Press, New York, 1993), pp. 173–235Google Scholar
  2. 2.
    I. Shmulevich, S.A. Kauffman, Phys. Rev. Lett. 93, 048701 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    I. Shmulevich, E.R. Dougherty, W. Zhang, Proc. IEEE 90, 1778 (2002)CrossRefGoogle Scholar
  4. 4.
    I. Shmulevich, H. Lähdesmäki, E.R. Dougherty, J. Astola, W. Zhang, Proc. Natl. Acad. Sci. USA 100, 10734 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    T. Helikar, J. Konvalina, J. Heidel, J.A. Rogers, Proc. Natl. Acad. Sci. USA 105, 1913 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    N. Kochi, M.T. Matache, Biosystems 108, 14 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Klemm, S. Bornholdt, Phys. Rev. E 72, 055101 (2000)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    L. Raeymaekers, J. Theor. Biol. 218, 331 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Hegselmann, R. Flache, J. Artif. Soc. Soc. Simulat. 1 (1998)Google Scholar
  10. 10.
    D.G. Green, T.G. Leisman, S. Sadedin, in Proceedings of IEEE Symposium on Artificial Life, Honolulu, Hawaii, 2007 Google Scholar
  11. 11.
    A. Moreira, A. Mathur, D. Diermeier, L. Amaral, R. Karp, Proc. Natl. Acad. Sci. USA 101, 12085 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    J. Jumadinova, M.T. Matache, P. Dasgupta, in Proceedings of the 2011 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011, pp. 171–179Google Scholar
  13. 13.
    C. Huepe, M. Aldana-González, J. Stat. Phys. 108, 527 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    S. Wolfram, A new kind of science (Wolfram Media, Champaign, 2002)Google Scholar
  15. 15.
    S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Proc. Natl. Acad. Sci. USA 101, 17102 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    S. Nikolajewa, M. Friedel, T. Wilhelm, Biosystems 90, 40 (2007)CrossRefGoogle Scholar
  17. 17.
    P. Rämö, J. Kesseli, O. Yli-Harja, Chaos 15, 34101 (2005)CrossRefGoogle Scholar
  18. 18.
    W. Just, I. Shmulevich, J. Konvalina, Physica D 197, 211 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    T.P. Peixoto, Eur. Phys. J. B 78, 187 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S.E. Harris, B.K. Sawhill, A. Wuensche, S. Kauffman, Complexity 7, 23 (2002)CrossRefGoogle Scholar
  21. 21.
    L. Layne, E. Dimitrova, M. Macauley, Bull. Math. Biol. 74, 422 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    A.A. Moreira, L.A.N. Amaral, Phys. Rev. Lett. 94, 218702 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Proc. Natl. Acad. Sci. USA 100, 14796 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    M. Anthony, in Proceedings of the Workshop on Discrete Mathematics and Data Mining, 3rd SIAM International Conference on Data Mining, San Francisco, 2003 Google Scholar
  25. 25.
    G.L. Beck, M.T. Matache, Physica A 387, 4947 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    B. Derrida, Y. Pomeau, Europhys. Lett. 1, 45 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    A. Szejka, T. Mihaljev, B. Drossel, New J. Phys. 10, 063009 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of Nebraska at Omaha, MathematicsOmahaUSA

Personalised recommendations