A Schelling model with switching agents: decreasing segregation via random allocation and social mobility

Regular Article

Abstract

We study the behaviour of a Schelling-class system in which a fraction f of spatially-fixed switching agents is introduced. This new model allows for multiple interpretations, including: (i) random, non-preferential allocation (e.g. by housing associations) of given, fixed sites in an open residential system, and (ii) superimposition of social and spatial mobility in a closed residential system. We find that the presence of switching agents in a segregative Schelling-type dynamics can lead to the emergence of intermediate patterns (e.g. mixture of patches, fuzzy interfaces) as the ones described in [E. Hatna, I. Benenson, J. Artif. Soc. Social. Simul. 15, 6 (2012)]. We also investigate different transitions between segregated and mixed phases both at f = 0 and along lines of increasing f, where the nature of the transition changes.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    T.C. Schelling, J. Math. Sociol. 1, 143 (1971)CrossRefGoogle Scholar
  2. 2.
    H. Meyer-Ortmanns, Int. J. Mod. Phys. C 14, 311 (2003)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D. Vinković, A. Kirman, Proc. Natl. Acad. Sci. 103, 19261 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    D. Stauffer, S. Solomon, Eur. Phys. J. B 57, 473 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    K. Müller, C. Schulze, D. Stauffer, Int. J. Mod. Phys. C 19, 385 (2008)ADSCrossRefMATHGoogle Scholar
  6. 6.
    M.A. Sumour, A.H. El-Astal, M.A. Radwan, M.M. Shabat, Int. J. Mod. Phys. C 19, 637 (2008)ADSCrossRefMATHGoogle Scholar
  7. 7.
    L. Gauvin, J. Vannimenus, J.-P. Nadal, Eur. Phys. J. B 70, 293 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    L. Gauvin, Modélisation de systèmes socio-économiques à l’aide des outils de physique statistique, Ph.D. thesis, Université Pierre et Marie Curie, 2010Google Scholar
  9. 9.
    T. Rogers, A.J. McKane, J. Stat. Mech. 2011, p07006 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Grauwin, F. Goffette-Nagot, P. Jensen, J. Publ. Econ. 96, 124 (2012)CrossRefGoogle Scholar
  11. 11.
    W.A.V. Clark, M. Fossett, Proc. Natl. Acad. Sci. 105, 4109 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    A. Pluchino, C. Garofalo, A. Rapisarda, S. Spagano, M. Caserta, Physica A 390, 3944 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Pluchino, A. Rapisarda, C. Garofalo, Physica A 389, 467 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A.E. Biondo, A. Rapisarda, C. Garofalo, Physica A 390, 3496 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A.E. Biondo, A. Pluchino, A. Rapisarda, D. Helbing, PLoS ONE 8, e68344 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    D. Cornforth, D.G. Green, D. Newth, Physica D 204, 70 (2005)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    G. Deffuant, F. Amblard, G. Weisbuch, T. Faure, J. Artif. Soc. Social. Simul. 5, 1 (2002)Google Scholar
  18. 18.
    E. Hatna, I. Benenson, J. Artif. Soc. Social. Simul. 15, 6 (2012)Google Scholar
  19. 19.
    T.C. Schelling, Micromotives and Macrobehavior (W.W. Norton, New York, 1978)Google Scholar
  20. 20.
    F.L. Jones, Aust. New. Zealand J. Sociol. 21, 431 (1985)CrossRefGoogle Scholar
  21. 21.
    M. Blume, V.J. Emery, R.B. Griffiths, Phys. Rev. A 4, 1071 (1971)ADSCrossRefGoogle Scholar
  22. 22.
    T. Rogers, A. McKane, Phys. Rev. E 85, 041136 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M.N. Barber, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic Press, New York, 1983), Vol. 8, p. 145Google Scholar
  24. 24.
    K. Binder, Rep. Prog. Phys. 50, 783 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    L. Gauvin, A. Hazan, J. Randon-Furling, ECCS’13 (selected for oral presentation)Google Scholar
  26. 26.
    S. Grauwin, E. Bertin, R. Lemoy, P. Jensen, Proc. Natl. Acad. Sci. 106, 20622 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    J. García-Ojalvo, J. Sancho, Noise in Spatially Extended Systems (Springer-Verlag, New York, 1999)Google Scholar
  28. 28.
    W.A.V. Clark, Demography 28, 1 (1991)CrossRefGoogle Scholar
  29. 29.
    A.J. Laurie, N.K. Jaggi, Solid State Phys. 45, 183 (2002)Google Scholar
  30. 30.
    M. Fossett, J. Math. Sociol. 30, 185 (2006)CrossRefGoogle Scholar
  31. 31.
    I. Benenson, Comp. Env. Urb. Syst. 22, 25 (1998)CrossRefGoogle Scholar
  32. 32.
    C. Schulze, Int. J. Mod. Phys. C 16, 351 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    I. Benenson, I. Omer, E. Hatna, Environment and Planning B 29, 491 (2002)CrossRefGoogle Scholar
  34. 34.
    E.E. Bruch, R.D. Mare, Am. J. Sociol. 112, 667 (2006)CrossRefGoogle Scholar
  35. 35.
    G. Koehler, J. Skvoretz, Soc. Sci. Res. 39, 14 (2010)CrossRefGoogle Scholar
  36. 36.
    D. Stauffer, J. Stat. Phys. 151, 9 (2013)MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.LISSIUniversité Paris-Est Créteil (UPEC)LieusaintFrance
  2. 2.SAMMUniversité Paris-1 Panthéon-SorbonneParisFrance

Personalised recommendations