Advertisement

Nonlinear electronic transport in nanoscopic devices: nonequilibrium Green’s functions versus scattering approach

  • Alexis R. HernándezEmail author
  • Caio H. Lewenkopf
Regular Article

Abstract

We study the nonlinear elastic quantum electronic transport properties of nanoscopic devices using the nonequilibrium Green’s function (NEGF) method. The Green’s function method allows us to expand the I-V characteristics of a given device to arbitrary powers of the applied voltages. By doing so, we are able to relate the NEGF method to the scattering approach, showing their similarities and differences and calculate the conductance coefficients to arbitrary order. We demonstrate that the electronic current given by NEGF is gauge invariant to all orders in powers of V, and discuss the requirements for gauge invariance in the standard density functional theory (DFT) implementations in molecular electronics. We also analyze the symmetries of the nonlinear conductance coefficients with respect to a magnetic field inversion and the violation of the Onsager reciprocity relations with increasing source-drain bias.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    A. Löfgren, C.A. Marlow, I. Shorubalko, R.P. Taylor, P. Omling, L. Samuelson, H. Linke, Phys. Rev. Lett. 92, 046803 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    C.A. Marlow, R.P. Taylor, M. Fairbanks, I. Shorubalko, H. Linke, Phys. Rev. Lett. 96, 116801 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    D.M. Zumbühl, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 96, 206802 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    R. Leturcq, D. Sánchez, G. Götz, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Phys. Rev. Lett. 96, 126801 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    L. Angers, E. Zakka-Bajjani, R. Deblock, S. Guéron, H. Bouchiat, A. Cavanna, U. Gennser, M. Polianski, Phys. Rev. B 75, 115309 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    J. Wei, M. Shimogawa, Z. Wang, I. Radu, R. Dormaier, D.H. Cobden, Phys. Rev. Lett. 95, 256601 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    A. Nitzan, M.A. Ratner, Science 300, 1384 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    T. Christen, M. Büttiker, Europhys. Lett. 35, 523 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    D. Sánchez, M. Büttiker, Phys. Rev. Lett. 93, 106802 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    M.L. Polianski, M. Büttiker, Phys. Rev. Lett. 96, 156804 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    M.L. Polianski, M. Büttiker, Phys. Rev. B 76, 205308 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    B. Wang, J. Wang, H. Guo, J. Appl. Phys. 86, 5094 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Xue, S. Datta, M.A. Ratner, Chem. Phys. 281, 151 (2002)CrossRefGoogle Scholar
  15. 15.
    B. Spivak, A. Zyuzin, Phys. Rev. Lett. 93, 226801 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    E. Deyo, B. Spivak, A. Zyuzin, Phys. Rev. B 74, 104205 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    J.S. Lim, D. Sánchez, R. López, Phys. Rev. B 81, 155323 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    P.S. Damle, A.W. Ghosh, S. Datta, Phys. Rev. B 64, 201403(R) (2001)ADSCrossRefGoogle Scholar
  19. 19.
    J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    F. Evers, F. Weigend, M. Koentopp, Phys. Rev. B 69, 235411 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    S.H. Ke, H.U. Baranger, W. Yang, Phys. Rev. B 70, 085410 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    M. Koentopp, K. Burke, F. Evers, Phys. Rev. B 73, 121403(R) (2006)ADSCrossRefGoogle Scholar
  23. 23.
    N.D. Lang, Phys. Rev. B 52, 5335 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    P. Hyldgaard, Phys. Rev. B 78, 165109 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    D.I. Golosov, Y. Gefen, Phys. Rev. B 74, 205316 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    S.E. Nigg, R. Lopez, M. Büttiker, Phys. Rev. Lett. 97, 206804 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    R. Landauer, in Nonlinearity in Condensed Matter, edited by R. Bishop et al. (Springer, Berlin, 1987)Google Scholar
  28. 28.
    H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford University Press, Oxford, 2004)Google Scholar
  29. 29.
    Z.-S. Ma, J. Wang, H. Guo, Phys. Rev. B 57, 9108 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    I.L. Aleiner, P.W. Brouwer, L.I. Glazman, Phys. Rep. 358, 309 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    A. Hernández, V.M. Apel, F.A. Pinheiro, C.H. Lewenkopf, Physica A 385, 148 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    L. DiCarlo, C.M. Marcus, J.S. Harris, Phys. Rev. Lett. 91, 246804 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    M. Switkes, C.M. Marcus, K. Campman, A.C. Gossard, Science 283, 1905 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    P.W. Brouwer, Phys. Rev. B 63, 121303(R) (2001)ADSCrossRefGoogle Scholar
  35. 35.
    M. Martínez-Mares, C.H. Lewenkopf, E.R. Mucciolo, Phys. Rev. B 69, 085301 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, New York, 1996)Google Scholar
  38. 38.
    M. Koentopp, C. Chang, K. Burke, R. Car, J. Phys.: Condens. Matter 20, 083203 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    G. Stefanucci, C.-O. Almbladh, Europhys. Lett. 67, 14 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    M. Cini, Phys. Rev. B 22, 5887 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    M. Büttiker, IBM J. Res. Dev. 32, 317 (1988)CrossRefGoogle Scholar
  42. 42.
    D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    L. Onsager, Phys. Rev. 38, 2265 (1931)ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    H.B.G. Casimir, Rev. Mod. Phys. 17, 343 (1945)ADSCrossRefGoogle Scholar
  45. 45.
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)ADSCrossRefGoogle Scholar
  46. 46.
    A.D. Benoit, S. Washburn, C.P. Umbach, R.B. Laibowitz, R.A. Webb, Phys. Rev. Lett. 57, 1765 (1986)ADSCrossRefGoogle Scholar
  47. 47.
    A. Yacoby, M. Heiblum, D. Mahalu, H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    A. Yacoby, R. Schuster, M. Heiblum, Phys. Rev. B 53, 9583 (1996)ADSCrossRefGoogle Scholar
  49. 49.
    A.L. Yeyati, M. Büttiker, Phys. Rev. B 52, R14 360 (1995)CrossRefGoogle Scholar
  50. 50.
    I.B. Levinson, Sov. Phys. J. Exp. Theor. Phys. 68, 1257 (1989)Google Scholar
  51. 51.
    A.R. Hernández, C.H. Lewenkopf, Phys. Rev. Lett. 103, 166801 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    D. Andrieux, P. Gaspard, J. Stat. Mech. P02006 (2007)Google Scholar
  53. 53.
    D. Andrieux, P. Gaspard, J. Chem. Phys. 121, 6167 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    C. Mahaux, H.A. Weidenmüller, Shell-model Approach to Nuclear Reactions (North Holland Publishing Co., Amsterdam, 1969)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Instituto de Física, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Física, Universidade Federal FluminenseNiteróiBrazil

Personalised recommendations