Numerical demodulation of a Gaussian white noise modulated in amplitude by a deterministic volatility

Regular Article

Abstract

The Gaussian white noise modulated in amplitude is defined as the product of a Gaussian white noise and a slowly varying signal with strictly positive values, called volatility. It is a special case of the superstatistical systems with the amplitude as the single parameter associated to the environment variations. If the volatility is deterministic, then the demodulation, i.e., the separation of the two components from a measured time series, can be achieved by a moving average with the averaging window length optimized by the condition that the absolute values of the estimated white noise are uncorrelated. Using Monte Carlo experiments we show that the large scale deterministic volatility can be accurately numerically determined. The artificial deterministic volatilities have a variety of shapes comparable with those occurring in real financial time series. Applied to the daily returns of the S&P500 index, the demodulation algorithm indicates that the most part of the financial volatility is deterministic.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    S.J. Taylor, Asset Price Dynamics, Volatility, and Prediction (Princeton University Press, Princeton, 2007) Google Scholar
  2. 2.
    J.D. Hamilton, Time Series Analysis (Princeton University Press, Princeton, 1994)Google Scholar
  3. 3.
    J. Voit, The Statistical Mechanics of Financial Markets, 3rd edn. (Springer, Berlin, 2005)Google Scholar
  4. 4.
    ARCH, Selected Readings, edited by R.F. Engle (Oxford University Press, Oxford, 1995)Google Scholar
  5. 5.
    R. Cont, Quant. Financ. 1, 223 (2001)CrossRefGoogle Scholar
  6. 6.
    S. Van Bellegem, in Wiley Handbook in Financial Engineering and Econometrics: Volatility Models and Their Applications, edited by L. Bauwens, C. Hafner, S. Laurent (Wiley, New York, 2011), p. 323Google Scholar
  7. 7.
    R. Dahlhaus, in Time Series Analysis: Methods and Applications, edited by T.S. Rao, S.S. Rao, C.R. Rao (North-Holland Publ., Oxford, 2012), p. 351Google Scholar
  8. 8.
    L. Davies, C. Höhenrieder, W. Krämer, Comput. Stat. Data Anal. 56, 3623 (2012) MATHCrossRefGoogle Scholar
  9. 9.
    D. Mercurio, V. Spokoiny, Ann. Statist. 32, 577 (2004)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    R.F. Engle, J.G. Rangel, Rev. Financ. Stud. 21, 1187 (2008) CrossRefGoogle Scholar
  11. 11.
    C. Vamoş, M. Crăciun, Phys. Rev. E 81, 051125 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    S.-H. Poon, A Practical Guide to Forecasting Financial Market Volatility, Wiley Finance Series (Wiley, Chichester, 2005)Google Scholar
  13. 13.
    C. Vamoş, M. Crăciun, Phys. Rev. E 78, 036707 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    C. Vamoş, M. Crăciun, Automatic Trend Estimation (Springer, Dordrecht, 2012)Google Scholar
  15. 15.
    S. Alfarano, F. Wagner, M. Milaković, Appl. Financ. Econ. Lett. 4, 311 (2008)CrossRefGoogle Scholar
  16. 16.
    F. Wagner, M. Milaković, S. Alfarano, Eur. Phys. J. B 73, 23 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    T.G. Andersen, T. Bollerslev, F.X. Diebold, H. Ebens, J. Financ. Econ. 61, 43 (2001)CrossRefGoogle Scholar
  18. 18.
    C. Stărică, C. Granger, Rev. Econ. Stat. 87, 503 (2005)CrossRefGoogle Scholar
  19. 19.
    C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    C. Beck, Phil. Trans. R. Soc. A 369, 453 (2011) ADSMATHCrossRefGoogle Scholar
  21. 21.
    C. Beck, Braz. J. Phys. 39, 357 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    R. Hanel, S. Thurner, M. Gell-Mann, Proc. Natl. Acad. Sci. 108, 6390 (2011) MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    V. Spokoiny, Ann. Statist. 37, 1405 (2009) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    S. Van Bellegem, R. von Sachs, Ann. Statist. 36, 1879 (2008) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    J.A. Schumpeter, Business Cycles. A Theoretical, Historical and Statistical Analysis of the Capitalist Process (McGraw-Hill, New York, 1939)Google Scholar
  26. 26.
    S. Van Bellegem, R. von Sachs, Int. J. Forecasting 20, 611 (2004)CrossRefGoogle Scholar
  27. 27.
    E. Van der Straeten, C. Beck, Phys. Rev. E 80, 036108 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    A. Gerig, J. Vicente, M.A. Fuentes, Phys. Rev. E 80, 065102 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, H.E. Stanley, Phys. Rev. E 60, 1390 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    P.J. Brockwell, R.A. Davies, Time Series: Theory and Methods (Springer Verlag, New York, 1996)Google Scholar
  31. 31.
    G.E.P. Box, D.A. Pierce, J. Am. Stat. Assoc. 65, 1509 (1970) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    J.C. Escanciano, I.N. Lobato, J. Econom. 151, 140 (2009) MathSciNetCrossRefGoogle Scholar
  33. 33.
    S.I. Resnick, Heavy tails Phenomena. Probabilistic and Statistical Modeling (Springer, New York, 2007)Google Scholar
  34. 34.
    R.N. Mantegna, H.E. Stanley, Nature 376, 46 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    P. Gopikrishnan, V. Plerou, L.A. Nunes Amaral, M. Meyer, H.E. Stanley, Phys. Rev. E 60, 5305 (1999) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.“T. Popoviciu” Institute of Numerical AnalysisRomanian AcademyCluj-NapocaRomania

Personalised recommendations