Epidemic centrality — is there an underestimated epidemic impact of network peripheral nodes?

  • Mile ŠikićEmail author
  • Alen Lančić
  • Nino Antulov-Fantulin
  • Hrvoje Štefančić
Regular Article


In the study of disease spreading on empirical complex networks in SIR model, initially infected nodes can be ranked according to some measure of their epidemic impact. The highest ranked nodes, also referred to as “superspreaders”, are associated to dominant epidemic risks and therefore deserve special attention. In simulations on studied empirical complex networks, it is shown that the ranking depends on the dynamical regime of the disease spreading. A possible mechanism leading to this dependence is illustrated in an analytically tractable example. In systems where the allocation of resources to counter disease spreading to individual nodes is based on their ranking, the dynamical regime of disease spreading is frequently not known before the outbreak of the disease. Therefore, we introduce a quantity called epidemic centrality as an average over all relevant regimes of disease spreading as a basis of the ranking. A recently introduced concept of phase diagram of epidemic spreading is used as a framework in which several types of averaging are studied. The epidemic centrality is compared to structural properties of nodes such as node degree, k-cores and betweenness. There is a growing trend of epidemic centrality with degree and k-cores values, but the variation of epidemic centrality is much smaller than the variation of degree or k-cores value. It is found that the epidemic centrality of the structurally peripheral nodes is of the same order of magnitude as the epidemic centrality of the structurally central nodes. The implications of these findings for the distributions of resources to counter disease spreading are discussed.


Statistical and Nonlinear Physics 


  1. 1.
    R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, 1991)Google Scholar
  2. 2.
    M.J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals (Princeton University Press, 2008)Google Scholar
  3. 3.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    N.C. Grassly, C. Fraser, Nat. Rev. Microbiol. 6, 477 (2008)Google Scholar
  8. 8.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    M. Youssef, R. Kooij, C. Scoglio, J. Comput. Sci. 2, 286 (2011)CrossRefGoogle Scholar
  10. 10.
    V. Colizza, A. Barrat, M. Barthelemy, A.J. Valleron, A. Vespignani, PLoS Med. 4, 95 (2007)CrossRefGoogle Scholar
  11. 11.
    V. Colizza, A. Barrat, M. Barthelemy, A. Vespignani, Proc. Natl. Acad. Sci. USA 103, 2015 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    V. Colizza, A. Vespignani, Phys. Rev. Lett. 99, 148701 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    M. Kitsak et al., Nat. Phys. 6, 888 (2010)CrossRefGoogle Scholar
  14. 14.
    L.C. Freeman, Social Networks 1, 215 (1979)CrossRefGoogle Scholar
  15. 15.
    N.E. Friedkin, Am. J. Soc. 96, 1478 (1991)CrossRefGoogle Scholar
  16. 16.
    K. Klemm, M.A. Serrano, V.M. Eguiluz, M. San Miguel, Sci. Rep. 2, 292 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Shen et al., Emerg. Infect. Dis. 10, 256 (2004)CrossRefGoogle Scholar
  18. 18.
    J.O. Lloyd-Smith, S.J. Schreiber, P. Kopp, W.M. Getz, Nature 438, 355 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    S. Bansal, B.T. Grenfell, L.A. Meyers, J. R. Soc. Interface 4, 879 (2007)CrossRefGoogle Scholar
  20. 20.
    W.O. Kermack, A.G. McKendrick, Proc. R. Soc. London A 115, 700 (1927)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    A. Lancic, N. Antulov-Fantulin, M. Sikic, H. Stefancic, Physica A 390, 65 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    E. Volz, L.A. Meyers, J. R. Soc. Interface 6, 233 (2009)CrossRefGoogle Scholar
  23. 23.
    I.B. Schwartz, L.B. Shaw, Physics 3, 17 (2010)CrossRefGoogle Scholar
  24. 24.
    M.E.J. Newman, Proc. Natl. Acad. Sci. USA. 98, 404 (2001)MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  26. 26.
  27. 27.
    A. Grabowski, N. Kruszevska, R.A. Kosiński, Phys. Rev. E 78, 066110 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    D.G. Gibson et al., Science 329, 52 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    V.T. Vredenburg, R.A. Knapp, T.S. Tunstall, C.J. Briggs, Proc. Natl. Acad. Sci. USA 107, 9689 (2010)ADSCrossRefGoogle Scholar
  30. 30.
  31. 31.
    G.A. Forster, C.A. Gilligan, Proc. Natl. Acad. Sci. USA 104, 4984 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    R.E. Rowthorn, R. Laxminarayan, C.A. Gilligan, J. R. Soc. Interface 6, 1135 (2009)CrossRefGoogle Scholar
  33. 33.
    A. Grabowski, M. Rosińska, Eur. Phys. J. B 85, 248 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A. Grabowski, M. Rosińska, Acta. Phys. Pol. B 37, 1521 (2006)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mile Šikić
    • 1
    • 2
    Email author
  • Alen Lančić
    • 3
  • Nino Antulov-Fantulin
    • 4
  • Hrvoje Štefančić
    • 5
  1. 1.Bioinformatics InstituteA*STARSingaporeSingapore
  2. 2.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  3. 3.Faculty of Science, Department of MathematicsUniversity of ZagrebZagrebCroatia
  4. 4.Division of ElectronicsRudjer Bošković InstituteZagrebCroatia
  5. 5.Theoretical Physics DivisionRudjer Bošković InstituteZagrebCroatia

Personalised recommendations